Molecular Players at the Sorting Stations of Malaria Parasite ‘Plasmodium falciparum’


Цитировать

Полный текст

Аннотация

The apicomplexan pathogenic parasite ‘Plasmodium falciparum’ (Pf) is responsible for most of the malaria related mortality. It resides in and refurbishes the infected red blood cells (iRBCs) for its own survival and to suffice its metabolic needs. Remodeling of host erythrocytes involves alteration of physical and biochemical properties of the membrane and genesis of new parasite induced structures within the iRBCs. The generated structures include knobs and solute ion channels on the erythrocyte surface and specialized organelles i.e. Maurer’s clefts (MCs) in the iRBC cytosol. The above processes are mediated by exporting a large repertoire of proteins to the host cell, most of which are transported via MCs, the sorting stations in parasitized erythrocytes. Information about MC biogenesis and the molecules involved in maintaining MC architecture remains incompletely elucidated. Here, we have compiled a list of experimentally known MC resident proteins, several of which have roles in maintaining its architecture and function. Our short review covers available data on the domain organization, orthologues, topology and specific roles of these proteins. We highlight the current knowledge gaps in our understanding of MCs as crucial organelles involved in parasite biology and disease pathogenesis.

Об авторах

Jasweer Kaur

Department of Biochemistry, Govt. College for Girls, Ludhiana, Punjab, India (Affiliated to Panjab University

Email: info@benthamscience.net

Prakash Mishra

Biotechnology, Guru Nanak Dev University

Email: info@benthamscience.net

Rachna Hora

Department of Molecular Biology and Biochemistry, Guru Nanak Dev University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. World malaria report. 2022. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (Accessed on: August 12, 2023).
  2. White, N.J.; Ho, M. The pathophysiology of Malaria. In: Advances in Parasitology; Baker, J.R.; Muller, R., Eds.; Academic Press, 1992; Vol. 31, pp. 83-173. doi: 10.1016/S0065-308X(08)60021-4
  3. Prevention CC for DC and. Biology. 2020. Available from: https://www.cdc.gov/malaria/about/biology/index.html (Accessed on: August 12, 2023).
  4. Lopes, S.C.P.; Albrecht, L.; Carvalho, B.O.; Siqueira, A.M.; Thomson-Luque, R.; Nogueira, P.A.; Fernandez-Becerra, C.; del Portillo, H.A.; Russell, B.M.; Rénia, L.; Lacerda, M.V.G.; Costa, F.T.M. Paucity of Plasmodium vivax mature schizonts in peripheral blood is associated with their increased cytoadhesive potential. J. Infect. Dis., 2014, 209(9), 1403-1407. doi: 10.1093/infdis/jiu018 PMID: 24415786
  5. Hiller, N.L.; Bhattacharjee, S.; van Ooij, C.; Liolios, K.; Harrison, T.; Lopez-Estraño, C.; Haldar, K. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science, 2004, 306(5703), 1934-1937. doi: 10.1126/science.1102737 PMID: 15591203
  6. Marti, M.; Baum, J.; Rug, M.; Tilley, L.; Cowman, A.F. Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J. Cell Biol., 2005, 171(4), 587-592. doi: 10.1083/jcb.200508051 PMID: 16301328
  7. Blisnick, T.; Morales Betoulle, M.E.; Barale, J.C.; Uzureau, P.; Berry, L.; Desroses, S.; Fujioka, H.; Mattei, D.; Breton, B.C. Pfsbp1, a maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. Parasitol., 2000, 111(1), 107-121. doi: 10.1016/S0166-6851(00)00301-7 PMID: 11087921
  8. Spielmann, T.; Hawthorne, P.L.; Dixon, M.W.A.; Hannemann, M.; Klotz, K.; Kemp, D.J.; Klonis, N.; Tilley, L.; Trenholme, K.R.; Gardiner, D.L. A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol. Biol. Cell, 2006, 17(8), 3613-3624. doi: 10.1091/mbc.e06-04-0291 PMID: 16760427
  9. Spycher, C.; Klonis, N.; Spielmann, T.; Kump, E.; Steiger, S.; Tilley, L.; Beck, H.P. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurer’s clefts. J. Biol. Chem., 2003, 278(37), 35373-35383. doi: 10.1074/jbc.M305851200 PMID: 12815049
  10. Spycher, C.; Rug, M.; Klonis, N.; Ferguson, D.J.P.; Cowman, A.F.; Beck, H.P.; Tilley, L. Genesis of and trafficking to the Maurer’s clefts of Plasmodium falciparum-infected erythrocytes. Mol. Cell. Biol., 2006, 26(11), 4074-4085. doi: 10.1128/MCB.00095-06 PMID: 16705161
  11. Tilley, L.; Sougrat, R.; Lithgow, T.; Hanssen, E. The twists and turns of Maurer’s cleft trafficking in P. falciparum-infected erythrocytes. Traffic, 2008, 9(2), 187-197. doi: 10.1111/j.1600-0854.2007.00684.x PMID: 18088325
  12. Blythe, J.E.; Yam, X.Y.; Kuss, C.; Bozdech, Z.; Holder, A.A.; Marsh, K.; Langhorne, J.; Preiser, P.R. Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect. Immun., 2008, 76(7), 3329-3336. doi: 10.1128/IAI.01460-07 PMID: 18474651
  13. Joannin, N.; Abhiman, S.; Sonnhammer, E.L.; Wahlgren, M. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics, 2008, 9(1), 19. doi: 10.1186/1471-2164-9-19 PMID: 18197962
  14. Kaviratne, M.; Khan, S.M.; Jarra, W.; Preiser, P.R. Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot. Cell, 2002, 1(6), 926-935. doi: 10.1128/EC.1.6.926-935.2002 PMID: 12477793
  15. Kyes, S.A.; Rowe, J.A.; Kriek, N.; Newbold, C.I. Rifins: A second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl. Acad. Sci., 1999, 96(16), 9333-9338. doi: 10.1073/pnas.96.16.9333 PMID: 10430943
  16. Lavazec, C.; Sanyal, S.; Templeton, T.J. Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res., 2006, 34(22), 6696-6707. doi: 10.1093/nar/gkl942 PMID: 17148488
  17. Mundwiler-Pachlatko, E.; Beck, H.P. Maurer’s clefts, the enigma of Plasmodium falciparum. Proc. Natl. Acad. Sci., 2013, 110(50), 19987-19994. doi: 10.1073/pnas.1309247110 PMID: 24284172
  18. Niang, M.; Yan Yam, X.; Preiser, P.R. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog., 2009, 5(2), e1000307. doi: 10.1371/journal.ppat.1000307 PMID: 19229319
  19. Przyborski, J.M.; Miller, S.K.; Pfahler, J.M.; Henrich, P.P.; Rohrbach, P.; Crabb, B.S.; Lanzer, M. Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J., 2005, 24(13), 2306-2317. doi: 10.1038/sj.emboj.7600720 PMID: 15961998
  20. Sam-Yellowe, T.Y.; Florens, L.; Johnson, J.R.; Wang, T.; Drazba, J.A.; Le Roch, K.G.; Zhou, Y.; Batalov, S.; Carucci, D.J.; Winzeler, E.A.; Yates, J.R., III A Plasmodium gene family encoding Maurer’s cleft membrane proteins: Structural properties and expression profiling. Genome Res., 2004, 14(6), 1052-1059. doi: 10.1101/gr.2126104 PMID: 15140830
  21. Tsarukyanova, I.; Drazba, J.A.; Fujioka, H.; Yadav, S.P.; Sam-Yellowe, T.Y. Proteins of the Plasmodium falciparum two transmembrane maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol. Res., 2009, 104(4), 875-891. doi: 10.1007/s00436-008-1270-3 PMID: 19130087
  22. Vincensini, L.; Richert, S.; Blisnick, T.; Van Dorsselaer, A.; Leize-Wagner, E.; Rabilloud, T.; Breton, B.C. Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol. Cell. Proteomics, 2005, 4(4), 582-593. doi: 10.1074/mcp.M400176-MCP200 PMID: 15671043
  23. Kumar, V.; Kaur, J.; Singh, A.P.; Singh, V.; Bisht, A.; Panda, J.J.; Mishra, P.C.; Hora, R. PHIST c protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1. FEBS J., 2018, 285(2), 294-312. doi: 10.1111/febs.14340 PMID: 29155505
  24. Pachlatko, E.; Rusch, S.; Müller, A.; Hemphill, A.; Tilley, L.; Hanssen, E.; Beck, H.P. MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurer’s cleft tethers. Mol. Microbiol., 2010, 77(5), 1136-1152. doi: 10.1111/j.1365-2958.2010.07278.x PMID: 20624222
  25. Hanssen, E.; Hawthorne, P.; Dixon, M.W.A.; Trenholme, K.R.; McMillan, P.J.; Spielmann, T.; Gardiner, D.L.; Tilley, L. Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer’s cleft organelles. Mol. Microbiol., 2008, 69(4), 938-953. doi: 10.1111/j.1365-2958.2008.06329.x PMID: 18573183
  26. Wickert, H.; Göttler, W.; Krohne, G.; Lanzer, M. Maurer’s cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur. J. Cell Biol., 2004, 83(10), 567-582. doi: 10.1078/0171-9335-00432 PMID: 15679102
  27. Wickert, H.; Krohne, G. The complex morphology of Maurer’s clefts: From discovery to three-dimensional reconstructions. Trends Parasitol., 2007, 23(10), 502-509. doi: 10.1016/j.pt.2007.08.008 PMID: 17888738
  28. Zhang, M.; Faou, P.; Maier, A.G.; Rug, M. Plasmodium falciparum exported protein PFE60 influences Maurer’s clefts architecture and virulence complex composition. Int. J. Parasitol., 2018, 48(1), 83-95. doi: 10.1016/j.ijpara.2017.09.003 PMID: 29100811
  29. Grüring, C.; Heiber, A.; Kruse, F.; Ungefehr, J.; Gilberger, T.W.; Spielmann, T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat. Commun., 2011, 2(1), 165. doi: 10.1038/ncomms1169 PMID: 21266965
  30. McMillan, P.J.; Millet, C.; Batinovic, S.; Maiorca, M.; Hanssen, E.; Kenny, S.; Muhle, R.A.; Melcher, M.; Fidock, D.A.; Smith, J.D.; Dixon, M.W.A.; Tilley, L. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell. Microbiol., 2013, 15(8), 1401-1418. doi: 10.1111/cmi.12125 PMID: 23421990
  31. Cyrklaff, M.; Sanchez, C.P.; Kilian, N.; Bisseye, C.; Simpore, J.; Frischknecht, F.; Lanzer, M. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science, 2011, 334(6060), 1283-1286. doi: 10.1126/science.1213775 PMID: 22075726
  32. Rug, M.; Cyrklaff, M.; Mikkonen, A.; Lemgruber, L.; Kuelzer, S.; Sanchez, C.P.; Thompson, J.; Hanssen, E.; O’Neill, M.; Langer, C.; Lanzer, M.; Frischknecht, F.; Maier, A.G.; Cowman, A.F. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood, 2014, 124(23), 3459-3468. doi: 10.1182/blood-2014-06-583054 PMID: 25139348
  33. Kilian, N.; Dittmer, M.; Cyrklaff, M.; Ouermi, D.; Bisseye, C.; Simpore, J.; Frischknecht, F.; Sanchez, C.P.; Lanzer, M. Haemoglobin S and C affect the motion of Maurer’s clefts in Plasmodium falciparum -infected erythrocytes. Cell. Microbiol., 2013, 15(7), 1111-1126. doi: 10.1111/cmi.12102 PMID: 23279197
  34. Knuepfer, E.; Rug, M.; Klonis, N.; Tilley, L.; Cowman, A.F. Trafficking of the major virulence factor to the surface of transfected P falciparum–infected erythrocytes. Blood, 2005, 105(10), 4078-4087. doi: 10.1182/blood-2004-12-4666 PMID: 15692070
  35. Kriek, N.; Tilley, L.; Horrocks, P.; Pinches, R.; Elford, B.C.; Ferguson, D.J.P.; Lingelbach, K.; Newbold, C.I. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol. Microbiol., 2003, 50(4), 1215-1227. doi: 10.1046/j.1365-2958.2003.03784.x PMID: 14622410
  36. Külzer, S.; Charnaud, S.; Dagan, T.; Riedel, J.; Mandal, P.; Pesce, E.R.; Blatch, G.L.; Crabb, B.S.; Gilson, P.R.; Przyborski, J.M. Plasmodium falciparum -encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell. Microbiol., 2012, 14(11), 1784-1795. doi: 10.1111/j.1462-5822.2012.01840.x PMID: 22925632
  37. McHugh, E.; Carmo, O.M.S.; Blanch, A.; Looker, O.; Liu, B.; Tiash, S.; Andrew, D.; Batinovic, S.; Low, A.J.Y.; Cho, H.J.; McMillan, P.; Tilley, L.; Dixon, M.W.A. Role of Plasmodium falciparum protein GEXP07 in Maurer’s cleft morphology, knob architecture, and P. falciparum EMP1 trafficking. MBio, 2020, 11(2), e03320-19. doi: 10.1128/mBio.03320-19 PMID: 32184257
  38. Saxena, R.; Kaur, J.; Hora, R.; Singh, P.; Singh, V.; Mishra, P.C. CX3CL1 binding protein-2 (CBP2) of Plasmodium falciparum binds nucleic acids. Int. J. Biol. Macromol., 2019, 138, 996-1005. doi: 10.1016/j.ijbiomac.2019.07.178 PMID: 31356937
  39. Aurrecoechea, C.; Brestelli, J.; Brunk, B.P.; Dommer, J.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; Harb, O.S.; Heiges, M.; Innamorato, F.; Iodice, J.; Kissinger, J.C.; Kraemer, E.; Li, W.; Miller, J.A.; Nayak, V.; Pennington, C.; Pinney, D.F.; Roos, D.S.; Ross, C.; Stoeckert, C.J., Jr; Treatman, C.; Wang, H. PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Res., 2009, 37(Database), D539-D543. doi: 10.1093/nar/gkn814 PMID: 18957442
  40. Saridaki, T.; Fröhlich, K.S.; Braun-Breton, C.; Lanzer, M. Export of PfSBP1 to the Plasmodium falciparum maurer’s clefts. Traffic, 2009, 10(2), 137-152. doi: 10.1111/j.1600-0854.2008.00860.x PMID: 19054387
  41. Mbengue, A.; Vialla, E.; Berry, L.; Fall, G.; Audiger, N.; Demettre-Verceil, E.; Boteller, D.; Braun-Breton, C. NEW export pathway in plasmodium falciparum -infected erythrocytes: Role of the parasite group II Chaperonin, PFTRIC. Traffic, 2015, 16(5), 461-475. doi: 10.1111/tra.12266 PMID: 25615740
  42. Kubota, H.; Hynes, G.; Willison, K. The chaperonin containing t-complex polypeptide 1 (TCP-1). Eur. J. Biochem., 1995, 230(1), 3-16. doi: 10.1111/j.1432-1033.1995.tb20527.x PMID: 7601114
  43. Kats, L.M.; Proellocks, N.I.; Buckingham, D.W.; Blanc, L.; Hale, J.; Guo, X.; Pei, X.; Herrmann, S.; Hanssen, E.G.; Coppel, R.L.; Mohandas, N.; An, X.; Cooke, B.M. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. Biochim. Biophys. Acta Biomembr., 2015, 1848(7), 1619-1628. doi: 10.1016/j.bbamem.2015.03.038 PMID: 25883090
  44. Blisnick, T.; Vincensini, L.; Fall, G.; Braun-Breton, C. Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. Cell. Microbiol., 2006, 8(4), 591-601. doi: 10.1111/j.1462-5822.2005.00650.x PMID: 16548885
  45. Blisnick, T.; Vincensini, L.; Barale, J.C.; Namane, A.; Braun Breton, C. LANCL1, an erythrocyte protein recruited to the Maurer’s clefts during Plasmodium falciparum development. Mol. Biochem. Parasitol., 2005, 141(1), 39-47. doi: 10.1016/j.molbiopara.2005.01.013 PMID: 15811525
  46. Cooke, B.M.; Buckingham, D.W.; Glenister, F.K.; Fernandez, K.M.; Bannister, L.H.; Marti, M.; Mohandas, N.; Coppel, R.L. A Maurer’s cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J. Cell Biol., 2006, 172(6), 899-908. doi: 10.1083/jcb.200509122 PMID: 16520384
  47. Pasternak, N.D.; Dzikowski, R. PfEMP1: An antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int. J. Biochem. Cell Biol., 2009, 41(7), 1463-1466. doi: 10.1016/j.biocel.2008.12.012 PMID: 19150410
  48. Maier, A.G.; Rug, M.; O’Neill, M.T.; Beeson, J.G.; Marti, M.; Reeder, J.; Cowman, A.F. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum–infected erythrocyte surface. Blood, 2007, 109(3), 1289-1297. doi: 10.1182/blood-2006-08-043364 PMID: 17023587
  49. Chan, J.A.; Howell, K.B.; Langer, C.; Maier, A.G.; Hasang, W.; Rogerson, S.J.; Petter, M.; Chesson, J.; Stanisic, D.I.; Duffy, M.F.; Cooke, B.M.; Siba, P.M.; Mueller, I.; Bull, P.C.; Marsh, K.; Fowkes, F.J.I.; Beeson, J.G. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell. Mol. Life Sci., 2016, 73(21), 4141-4158. doi: 10.1007/s00018-016-2267-1 PMID: 27193441
  50. Hawthorne, P.L.; Trenholme, K.R.; Skinner-Adams, T.S.; Spielmann, T.; Fischer, K.; Dixon, M.W.A.; Ortega, M.R.; Anderson, K.L.; Kemp, D.J.; Gardiner, D.L. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer’s clefts. Mol. Biochem. Parasitol., 2004, 136(2), 181-189. doi: 10.1016/j.molbiopara.2004.03.013 PMID: 15481109
  51. Dixon, M.W.A.; Kenny, S.; McMillan, P.J.; Hanssen, E.; Trenholme, K.R.; Gardiner, D.L.; Tilley, L. Genetic ablation of a Maurer’s cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol. Microbiol., 2011, 81(4), 982-993. doi: 10.1111/j.1365-2958.2011.07740.x PMID: 21696460
  52. Haase, S.; Herrmann, S.; Grüring, C.; Heiber, A.; Jansen, P.W.; Langer, C.; Treeck, M.; Cabrera, A.; Bruns, C.; Struck, N.S.; Kono, M.; Engelberg, K.; Ruch, U.; Stunnenberg, H.G.; Gilberger, T.W.; Spielmann, T. Sequence requirements for the export of the Plasmodium falciparum Maurer’s clefts protein REX2. Mol. Microbiol., 2009, 71(4), 1003-1017. doi: 10.1111/j.1365-2958.2008.06582.x PMID: 19170882
  53. Spycher, C.; Rug, M.; Pachlatko, E.; Hanssen, E.; Ferguson, D.; Cowman, A.F.; Tilley, L.; Beck, H.P. The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum -infected erythrocytes. Mol. Microbiol., 2008, 68(5), 1300-1314. doi: 10.1111/j.1365-2958.2008.06235.x PMID: 18410498
  54. Marti, M.; Good, R.T.; Rug, M.; Knuepfer, E.; Cowman, A.F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 2004, 306(5703), 1930-1933. doi: 10.1126/science.1102452 PMID: 15591202
  55. Mattei, D.; Scherf, A. The Pf332 gene codes for a megadalton protein of Plasmodium falciparum asexual blood stages. Mem. Inst. Oswaldo Cruz, 1992, 87(S3), 163-168. doi: 10.1590/S0074-02761992000700026 PMID: 1364200
  56. Mattei, D.; Scherf, A. The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene, 1992, 110(1), 71-79. doi: 10.1016/0378-1119(92)90446-V PMID: 1544579
  57. Moll, K.; Chêne, A.; Ribacke, U.; Kaneko, O.; Nilsson, S.; Winter, G.; Haeggström, M.; Pan, W.; Berzins, K.; Wahlgren, M.; Chen, Q. A novel DBL-domain of the P. falciparum 332 molecule possibly involved in erythrocyte adhesion. PLoS One, 2007, 2(5), e477. doi: 10.1371/journal.pone.0000477 PMID: 17534427
  58. Carmo, O.M.S.; Shami, G.J.; Cox, D.; Liu, B.; Blanch, A.J.; Tiash, S.; Tilley, L.; Dixon, M.W.A. Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLoS Pathog., 2022, 18(8), e1009882. doi: 10.1371/journal.ppat.1009882 PMID: 35930605
  59. Almaazmi, S.Y.; Singh, H.; Dutta, T.; Blatch, G.L. Exported J domain proteins of the human malaria parasite. Front. Mol. Biosci., 2022, 9, 978663. doi: 10.3389/fmolb.2022.978663 PMID: 36120546
  60. Waller, K.L.; Nunomura, W.; An, X.; Cooke, B.M.; Mohandas, N.; Coppel, R.L. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood, 2003, 102(5), 1911-1914. doi: 10.1182/blood-2002-11-3513 PMID: 12730097
  61. Waller, K.L.; Stubberfield, L.M.; Dubljevic, V.; Buckingham, D.W.; Mohandas, N.; Coppel, R.L.; Cooke, B.M. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim. Biophys. Acta Biomembr., 2010, 1798(5), 861-871. doi: 10.1016/j.bbamem.2010.01.018 PMID: 20132790
  62. Glenister, F.K.; Fernandez, K.M.; Kats, L.M.; Hanssen, E.; Mohandas, N.; Coppel, R.L.; Cooke, B.M. Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. Blood, 2009, 113(4), 919-928. doi: 10.1182/blood-2008-05-157735 PMID: 18832660
  63. Nilsson, S.; Angeletti, D.; Wahlgren, M.; Chen, Q.; Moll, K. Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurer’s clefts. PLoS One, 2012, 7(11), e46980. doi: 10.1371/journal.pone.0046980 PMID: 23185236
  64. Kaur, J.; Kumar, V.; Singh, A.P.; Singh, V.; Bisht, A.; Dube, T.; Panda, J.J.; Behl, A.; Mishra, P.C.; Hora, R. Plasmodium falciparum protein ‘PfJ23’ hosts distinct binding sites for major virulence factor ‘PfEMP1’ and Maurer’s cleft marker ‘PfSBP1’. Pathog. Dis., 2018, 76(9), fty090. doi: 10.1093/femspd/fty090 PMID: 30576479
  65. Lavazec, C.; Sanyal, S.; Templeton, T.J. Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol. Microbiol., 2007, 64(6), 1621-1634. doi: 10.1111/j.1365-2958.2007.05767.x PMID: 17555442
  66. Bachmann, A.; Scholz, J.A.M.; Janßen, M.; Klinkert, M.Q.; Tannich, E.; Bruchhaus, I.; Petter, M. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar. J., 2015, 14(1), 274. doi: 10.1186/s12936-015-0784-2 PMID: 26173856
  67. Yadavalli, R.; Peterson, J.W.; Drazba, J.A.; Sam-Yellowe, T.Y. Trafficking and Association of Plasmodium falciparum MC-2TM with the Maurer’s clefts. Pathogens, 2021, 10(4), 431. doi: 10.3390/pathogens10040431 PMID: 33916455
  68. Maier, A.G.; Rug, M.; O’Neill, M.T.; Brown, M.; Chakravorty, S.; Szestak, T.; Chesson, J.; Wu, Y.; Hughes, K.; Coppel, R.L.; Newbold, C.; Beeson, J.G.; Craig, A.; Crabb, B.S.; Cowman, A.F. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell, 2008, 134(1), 48-61. doi: 10.1016/j.cell.2008.04.051 PMID: 18614010
  69. Prajapati, S.K.; Singh, O.P. Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cells Mol. Dis., 2013, 51(3), 195-202. doi: 10.1016/j.bcmd.2013.06.003 PMID: 23880461
  70. Kumar, V.; Behl, A.; Sharma, R.; Sharma, A.; Hora, R. Plasmodium helical interspersed subtelomeric family—an enigmatic piece of the Plasmodium biology puzzle. Parasitol. Res., 2019, 118(10), 2753-2766. doi: 10.1007/s00436-019-06420-9 PMID: 31418110
  71. Regev-Rudzki, N.; Wilson, D.W.; Carvalho, T.G.; Sisquella, X.; Coleman, B.M.; Rug, M.; Bursac, D.; Angrisano, F.; Gee, M.; Hill, A.F.; Baum, J.; Cowman, A.F. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell, 2013, 153(5), 1120-1133. doi: 10.1016/j.cell.2013.04.029 PMID: 23683579
  72. Sargeant, T.; Marti, M.; Caler, E.; Carlton, J.; Simpson, K.; Speed, T.; Cowman, A. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol., 2006, 7(2), R12. doi: 10.1186/gb-2006-7-2-r12 PMID: 16507167
  73. Zhang, Q.; Ma, C.; Oberli, A.; Zinz, A.; Engels, S.; Przyborski, J.M. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci. Rep., 2017, 7(1), 42188. doi: 10.1038/srep42188 PMID: 28218284

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024