Prediction of SARS-CoV-2 Infection Phosphorylation Sites and Associations of these Modifications with Lung Cancer Development


Cite item

Full Text

Abstract

Introduction:Since the emergence of SARS-CoV-2 viruses, multiple mutant strains have been identified. Infection with SARS-CoV-2 virus leads to alterations in host cell phosphorylation signal, which systematically modulates the immune response.

Methods:Identification and analysis of SARS-CoV-2 virus infection phosphorylation sites enable insight into the mechanisms of viral infection and effects on host cells, providing important fundamental data for the study and development of potent drugs for the treatment of immune inflammatory diseases. In this paper, we have analyzed the SARS-CoV-2 virus-infected phosphorylation region and developed a transformer-based deep learning-assisted identification method for the specific identification of phosphorylation sites in SARS-CoV-2 virus-infected host cells.

Results:Furthermore, through association analysis with lung cancer, we found that SARS-CoV-2 infection may affect the regulatory role of the immune system, leading to an abnormal increase or decrease in the immune inflammatory response, which may be associated with the development and progression of cancer.

Conclusion:We anticipate that this study will provide an important reference for SARS-CoV-2 virus evolution as well as immune-related studies and provide a reliable complementary screening tool for anti-SARS-CoV-2 virus drug and vaccine design.

About the authors

Wei Li

Institute of Bioinformatics, Harbin Institute of Technology

Email: info@benthamscience.net

Gen Li

Department of Radiation Oncology, Harbin Medical University Cancer Hospital

Email: info@benthamscience.net

Yuzhi Sun

Institute for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology

Email: info@benthamscience.net

Liyuan Zhang

Institute for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology

Email: info@benthamscience.net

Xinran Cui

Institute for Bioinformatics, School of Computer Science and Technology,, Harbin Institute of Technology

Email: info@benthamscience.net

Yuran Jia

Institute for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology

Author for correspondence.
Email: info@benthamscience.net

Tianyi Zhao

School of Medicine and Health, Harbin Institute of Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020; 26(6): 845-8. doi: 10.1038/s41591-020-0897-1 PMID: 32350462
  2. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6. doi: 10.1016/j.cell.2020.02.058 PMID: 32155444
  3. Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature 2021; 594(7862): 246-52. doi: 10.1038/s41586-021-03493-4 PMID: 33845483
  4. Thorne LG, Bouhaddou M, Reuschl AK, et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 2022; 602(7897): 487-95. doi: 10.1038/s41586-021-04352-y PMID: 34942634
  5. Lamers MM, Beumer J, Van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369(6499): 50-4. doi: 10.1126/science.abc1669 PMID: 32358202
  6. Chen DY, Khan N, Close BJ, et al. SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol 2021; 95(19): e00862-21. doi: 10.1128/JVI.00862-21 PMID: 34260266
  7. Sharma A, Garcia G Jr, Wang Y, et al. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Rep Med 2020; 1(4): 100052. doi: 10.1016/j.xcrm.2020.100052 PMID: 32835305
  8. Liu JF, Peng WJ, Wu Y, et al. Proteomic and phosphoproteomic characteristics of the cortex, hippocampus, thalamus, lung, and kidney in COVID-19-infected female K18-hACE2 mice. EBioMedicine 2023; 90: 104518. doi: 10.1016/j.ebiom.2023.104518 PMID: 36933413
  9. Shemesh M, Aktepe TE, Deerain JM, et al. SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathog 2021; 17(8): e1009800. doi: 10.1371/journal.ppat.1009800 PMID: 34437657
  10. Bouhaddou M, Memon D, Meyer B, et al. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 2020; 182(3): 685-712.e19. doi: 10.1016/j.cell.2020.06.034 PMID: 32645325
  11. Klann K, Bojkova D, Tascher G, Ciesek S, Münch C, Cinatl J. Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication. Mol Cell 2020; 80(1): 164-174.e4. doi: 10.1016/j.molcel.2020.08.006 PMID: 32877642
  12. Gao J, Thelen JJ, Dunker AK, Xu D. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol Cell Proteomics 2010; 9(12): 2586-600. doi: 10.1074/mcp.M110.001388 PMID: 20702892
  13. Li F, Li C, Marquez-Lago TT, et al. Quokka: A comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome. Bioinformatics 2018; 34(24): 4223-31. doi: 10.1093/bioinformatics/bty522 PMID: 29947803
  14. Liu Q, Luo X, Li J, Wang G. scESI: evolutionary sparse imputation for single-cell transcriptomes from nearest neighbor cells. Brief Bioinform 2022; 23(5): bbac144. doi: 10.1093/bib/bbac144 PMID: 35512331
  15. Liu Q, Zhao X, Wang G. A clustering ensemble method for cell type detection by multiobjective particle optimization. IEEE/ACM Trans Comput Biol Bioinformatics 2023; 20(1): 1-14. PMID: 34860653
  16. Wang D, Zeng S, Xu C, et al. MusiteDeep: A deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics 2017; 33(24): 3909-16. doi: 10.1093/bioinformatics/btx496 PMID: 29036382
  17. Guo L, Wang Y, Xu X, et al. DeepPSP: A global–local information-based deep neural network for the prediction of protein phosphorylation sites. J Proteome Res 2021; 20(1): 346-56. doi: 10.1021/acs.jproteome.0c00431 PMID: 33241931
  18. Lv H, Dao FY, Zulfiqar H, Lin H. DeepIPs: Comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach. Brief Bioinform 2021; 22(6): bbab244. doi: 10.1093/bib/bbab244 PMID: 34184738
  19. Stukalov A, Girault V, Grass V, et al. Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV. bioRxiv 2020.
  20. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9. doi: 10.1093/bioinformatics/btl158 PMID: 16731699
  21. Vaswani A, Shazeer N, Parmar N, et al. Polosukhin IJa. Attention Is All You Need. In: Advances in neural information processing. 2017; p. 30.
  22. Li Z, Jin J, Wang Y, et al. ExamPle: Explainable deep learning framework for the prediction of plant small secreted peptides. Bioinformatics 2023; 39(3): btad108. doi: 10.1093/bioinformatics/btad108 PMID: 36897030
  23. Charoenkwan P, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. BERT4Bitter: A bidirectional encoder representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformatics 2021; 37(17): 2556-62. doi: 10.1093/bioinformatics/btab133 PMID: 33638635
  24. Ji Y, Zhou Z, Liu H, Davuluri RV. DNABERT: pre-trained bidirectional encoder representations from transformers model for dna-language in genome. Bioinformatics 2021; 37(15): 2112-20. doi: 10.1093/bioinformatics/btab083 PMID: 33538820
  25. Nie L, Quan L, Wu T, He R, Lyu Q. TransPPMP: Predicting pathogenicity of frameshift and non-sense mutations by a transformer based on protein features. Bioinformatics 2022; 38(10): 2705-11. doi: 10.1093/bioinformatics/btac188 PMID: 35561183
  26. Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. Arxiv 2014. doi: 10.3115/v1/D14-1179
  27. Jia Y, Huang S, Zhang TKK-DBP. A multi-feature fusion method for dna-binding protein identification based on random forest. Front Genet 2021; 12: 811158. doi: 10.3389/fgene.2021.811158 PMID: 34912382
  28. Zhang T, Jia Y, Li H, Xu D, Zhou J, Wang G. CRISPRCasStack: A stacking strategy-based ensemble learning framework for accurate identification of Cas proteins. Brief Bioinform 2022; 23(5): bbac335. doi: 10.1093/bib/bbac335 PMID: 35998924
  29. Ardito F, Giuliani M, Perrone D, Troiano G, Muzio LL. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review). Int J Mol Med 2017; 40(2): 271-80. doi: 10.3892/ijmm.2017.3036 PMID: 28656226
  30. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 2018; 24(11): 2482-90. doi: 10.1158/1078-0432.CCR-17-3070 PMID: 29420223

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers