The Mechanism of Astragaloside IV in NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome-mediated Pyroptosis after Intracerebral Hemorrhage


Cite item

Full Text

Abstract

Background::Intracerebral hemorrhage (ICH) is one of the most common subtypes of stroke.

Objectives::This study aimed to investigate the mechanism of Astragaloside IV (AS-IV) on inflammatory injury after ICH.

Methods::The ICH model was established by the injection of collagenase and treated with ASIV (20 mg/kg or 40 mg/kg). The neurological function, water content of the bilateral cerebral hemisphere and cerebellum, and pathological changes in brain tissue were assessed. The levels of interleukin-1 beta (IL-1β), IL-18, tumor necrosis factor-alpha, interferon-gamma, and IL-10 were detected by enzyme-linked immunosorbent assay. The levels of Kruppel-like factor 2 (KLF2), NOD-like receptor family pyrin domain containing 3 (NLRP3), GSDMD-N, and cleaved-caspase-1 were detected by reverse transcription-quantitative polymerase chain reaction and Western blot assay. The binding relationship between KLF2 and NLRP3 was verified by chromatin-immunoprecipitation and dual-luciferase assays. KLF2 inhibition or NLRP3 overexpression was achieved in mice to observe pathological changes.

Results::The decreased neurological function, increased water content, severe pathological damage, and inflammatory response were observed in mice after ICH, with increased levels of NLRP3/GSDMD-N/cleaved-caspase-1/IL-1β/IL-18 and poorly-expressed KLF2 in brain tissue. After AS-IV treatment, the neurological dysfunction, high brain water content, inflammatory response, and pyroptosis were alleviated, while KLF2 expression was increased. KLF2 bonded to the NLRP3 promoter region and inhibited its transcription. Down-regulation of KLF2 or upregulation of NLRP3 reversed the effect of AS-IV on inhibiting pyroptosis and reducing inflammatory injury in mice after ICH.

Conclusion::AS-IV inhibited NLRP3-mediated pyroptosis by promoting KLF2 expression and alleviated inflammatory injury in mice after ICH.

About the authors

Honggang Wu

Department of Neurosurgery, West China Hospital, Sichuan University

Email: info@benthamscience.net

Shu Chen

Department of Cerebrovascular Disease, The People's Hospital of Leshan

Email: info@benthamscience.net

Guoliang You

Department of Cerebrovascular Disease, The People's Hospital of Leshan

Email: info@benthamscience.net

Bo Lei

Department of Cerebrovascular Disease, The People's Hospital of Leshan

Email: info@benthamscience.net

Li Chen

Department of Cerebrovascular Disease, The People's Hospital of Leshan

Email: info@benthamscience.net

Jiachuan Wu

Department of Cerebrovascular Disease, The People's Hospital of Leshan

Email: info@benthamscience.net

Niandong Zheng

Department of Cerebrovascular Disease, The People's Hospital of Leshan

Email: info@benthamscience.net

Chao You

Department of Neurosurgery, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wilkinson DA, Pandey AS, Thompson BG, Keep RF, Hua Y, Xi G. Injury mechanisms in acute intracerebral hemorrhage. Neuropharmacology 2018; 134(Pt B): 240.: 8. doi: 10.1016/j.neuropharm.2017.09.033 PMID: 28947377
  2. Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J Stroke 2020; 22(1): 29-46. doi: 10.5853/jos.2019.02236 PMID: 32027790
  3. Ekkert A, Šliachtenko A, Utkus A, Jatužis D. Intracerebral hemorrhage genetics. Genes (Basel) 2022; 13(7): 1250. doi: 10.3390/genes13071250 PMID: 35886033
  4. Pinho J, Costa AS, Araújo JM, Amorim JM, Ferreira C. Intracerebral hemorrhage outcome: A comprehensive update. J Neurol Sci 2019; 398: 54-66. doi: 10.1016/j.jns.2019.01.013 PMID: 30682522
  5. Al-Kawaz MN, Hanley DF, Ziai W. Advances in therapeutic approaches for spontaneous intracerebral hemorrhage. Neurotherapeutics 2020; 17(4): 1757-67. doi: 10.1007/s13311-020-00902-w PMID: 32720246
  6. Wang S, Yuan YH, Chen NH, Wang HB. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 2019; 67: 458-64. doi: 10.1016/j.intimp.2018.12.019 PMID: 30594776
  7. Song D, Yeh CT, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 2022; 13: 989503. doi: 10.3389/fimmu.2022.989503 PMID: 36131917
  8. Ran Y, Su W, Gao F, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition. Oxid Med Cell Longev 2021; 2021: 1-25. doi: 10.1155/2021/1552127 PMID: 34630845
  9. Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors: A review. Front Pharmacol 2015; 6: 262. doi: 10.3389/fphar.2015.00262 PMID: 26594174
  10. Wang T, Nowrangi D, Yu L, et al. Activation of dopamine D1 receptor decreased NLRP3-mediated inflammation in intracerebral hemorrhage mice. J Neuroinflammation 2018; 15(1): 2. doi: 10.1186/s12974-017-1039-7 PMID: 29301581
  11. Gu L, Sun M, Li R, et al. Didymin suppresses microglia pyroptosis and neuroinflammation through the Asc/Caspase-1/GSDMD pathway following experimental intracerebral hemorrhage. Front Immunol 2022; 13: 810582. doi: 10.3389/fimmu.2022.810582 PMID: 35154128
  12. Xiao L, Wang M, Shi Y, et al. Secondary white matter injury mediated by neuroinflammation after intracerebral hemorrhage and promising therapeutic strategies of targeting the NLRP3 inflammasome. Curr Neuropharmacol 2023; 21(3): 669-86. doi: 10.2174/1570159X20666220830115018 PMID: 36043798
  13. Kang X, Su S, Hong W, Geng W, Tang H. Research progress on the ability of astragaloside IV to protect the brain against ischemia-reperfusion injury. Front Neurosci 2021; 15: 755902. doi: 10.3389/fnins.2021.755902 PMID: 34867166
  14. Huang K, Yu Y, Liu S, et al. A single, acute astragaloside iv therapy protects cardiomyocyte through attenuating superoxide anion-mediated accumulation of autophagosomes in myocardial ischemia-reperfusion injury. Front Pharmacol 2021; 12: 642925. doi: 10.3389/fphar.2021.642925 PMID: 34349641
  15. Zhu Y, Qian X, Li J, et al. Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. Artif Cells Nanomed Biotechnol 2019; 47(1): 4172-81. doi: 10.1080/21691401.2019.1687492 PMID: 31713440
  16. Song Z, Wei D, Chen Y, et al. Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling. Toxicol Appl Pharmacol 2019; 364: 45-54. doi: 10.1016/j.taap.2018.12.002 PMID: 30529164
  17. Shi YH, Zhang XL, Ying PJ, et al. Neuroprotective effect of astragaloside IV on cerebral ischemia/reperfusion injury rats through Sirt1/Mapt pathway. Front Pharmacol 2021; 12: 639898. doi: 10.3389/fphar.2021.639898 PMID: 33841157
  18. Ma Y, Qiao G, Yin Y, Zhang Y, Yu Y, Yu X. Protective effects of astragaloside IV on delayed cerebral vasospasm in an experimental rat model of subarachnoid hemorrhage. World Neurosurg 2018; 118: e443-8. doi: 10.1016/j.wneu.2018.06.212 PMID: 29981464
  19. Zheng Y, Li R, Zhou Y, Zhang S, Fan X. Investigation on the potential targets of Astragaloside IV against intracerebral hemorrhage based on network pharmacology and experimental validation. Bioorg Chem 2022; 127: 105975. doi: 10.1016/j.bioorg.2022.105975 PMID: 35728292
  20. Su Y, Yin X, Huang X, Guo Q, Ma M, Guo L. The BCL2/BAX/ROS pathway is involved in the inhibitory effect of astragaloside IV on pyroptosis in human umbilical vein endothelial cells. Pharm Biol 2022; 60(1): 1812-8. doi: 10.1080/13880209.2022.2101668 PMID: 36121248
  21. Turpaev KT. Transcription factor KLF2 and its role in the regulation of inflammatory processes. Biochemistry 2020; 85(1): 54-67. doi: 10.1134/S0006297920010058 PMID: 32079517
  22. Lu T, Peng S, Wang J, et al. Fraxinellone ameliorates intracerebral hemorrhage-induced secondary brain injury by regulating Krüppel-like transcription factor 2 expression in rats. Brain Res Bull 2021; 177: 340-51. doi: 10.1016/j.brainresbull.2021.10.018 PMID: 34717966
  23. Zhang X, Liu T, Xu S, et al. A pro-inflammatory mediator USP11 enhances the stability of p53 and inhibits KLF2 in intracerebral hemorrhage. Mol Ther Methods Clin Dev 2021; 21: 681-92. doi: 10.1016/j.omtm.2021.01.015 PMID: 34141823
  24. Jin H, Zhu Y, Wang X, et al. BDNF corrects NLRP3 inflammasome-induced pyroptosis and glucose metabolism reprogramming through KLF2/HK1 pathway in vascular endothelial cells. Cell Signal 2021; 78: 109843. doi: 10.1016/j.cellsig.2020.109843 PMID: 33253911
  25. Jones-Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol Appendix 2012; 4(Appendix): 4B.
  26. Chen S, Peng J, Sherchan P, et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J Neuroinflammation 2020; 17(1): 168. doi: 10.1186/s12974-020-01853-x PMID: 32466767
  27. Kopaladze RA. Methods for the euthanasia of experimental animals--the ethics, esthetics and personnel safety. Usp Fiziol Nauk 2000; 31(3): 79-90. PMID: 11042900
  28. Wang CJ, Qu CQ, Zhang J, Fu PC, Guo SG, Tang RH. Lingo-1 inhibited by RNA interference promotes functional recovery of experimental autoimmune encephalomyelitis. Anat Rec (Hoboken) 2014; 297(12): 2356-63. doi: 10.1002/ar.22988 PMID: 25045138
  29. Li Z, Wang B, Kan Z, et al. Progesterone increases circulating endothelial progenitor cells and induces neural regeneration after traumatic brain injury in aged rats. J Neurotrauma 2012; 29(2): 343-53. doi: 10.1089/neu.2011.1807 PMID: 21534727
  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8. doi: 10.1006/meth.2001.1262 PMID: 11846609
  31. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, et al. JASPAR 2022: The 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2022; 50(D1): D165-73. doi: 10.1093/nar/gkab1113 PMID: 34850907
  32. Hostettler IC, Seiffge DJ, Werring DJ. Intracerebral hemorrhage: An update on diagnosis and treatment. Expert Rev Neurother 2019; 19(7): 679-94. doi: 10.1080/14737175.2019.1623671 PMID: 31188036
  33. Zeng P, Wang XM, Su HF, et al. Protective effects of Da-cheng-qi decoction in rats with intracerebral hemorrhage. Phytomedicine 2021; 90: 153630. doi: 10.1016/j.phymed.2021.153630 PMID: 34217968
  34. Jin ZL, Gao WY, Liao SJ, et al. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis. ASN Neuro 2021; •••: 13. doi: 10.1177/17590914211010647 PMID: 33906483
  35. Duan L, Zhang Y, Yang Y, et al. Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol 2021; 12: 629379. doi: 10.3389/fphar.2021.629379 PMID: 33815110
  36. Li Z, Li Y, Han J, et al. Formyl peptide receptor 1 signaling potentiates inflammatory brain injury. Sci Transl Med 2021; 13(605): eabe9890. doi: 10.1126/scitranslmed.abe9890 PMID: 34349037
  37. Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 2020; 17(1): 47. doi: 10.1186/s12974-020-1726-7 PMID: 32019561
  38. Wang X, Gao F, Xu W, Cao Y, Wang J, Zhu G. Depichering the effects of astragaloside IV on AD-like phenotypes: A systematic and experimental investigation. Oxid Med Cell Longev 2021; 2021: 1-21. doi: 10.1155/2021/1020614 PMID: 34616501
  39. Qu S, Liu Z, Wang B. EZH2 is involved in psoriasis progression by impairing miR-125a-5p inhibition of SFMBT1 and leading to inhibition of the TGFβ/SMAD pathway. Ther Adv Chronic Dis 2021; •••: 12. doi: 10.1177/2040622320987348 PMID: 33948156
  40. Jha P, Das H. KLF2 in regulation of NF-κB-mediated immune cell function and inflammation. Int J Mol Sci 2017; 18(11): 2383. doi: 10.3390/ijms18112383 PMID: 29125549
  41. Wu F, Li C. KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell Death Discov 2022; 8(1): 41. doi: 10.1038/s41420-022-00813-z PMID: 35091544
  42. Lei L, Chen M, Wang C, et al. Trichostatin D as a novel KLF2 activator attenuates TNFα-induced endothelial inflammation. Int J Mol Sci 2022; 23(21): 13477. doi: 10.3390/ijms232113477 PMID: 36362263
  43. Zhuang T, Liu J, Chen X, et al. Endothelial foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation. Circ Res 2019; 125(6): 590-605. doi: 10.1161/CIRCRESAHA.118.314402 PMID: 31318658
  44. Poznyak AV, Melnichenko AA, Wetzker R, Gerasimova EV, Orekhov AN. NLPR3 inflammasomes and their significance for atherosclerosis. Biomedicines 2020; 8(7): 205. doi: 10.3390/biomedicines8070205 PMID: 32664349
  45. Chen Y, Meng J, Bi F, et al. NEK7 regulates NLRP3 inflammasome activation and neuroinflammation post-traumatic brain injury. Front Mol Neurosci 2019; 12: 202. doi: 10.3389/fnmol.2019.00202 PMID: 31555089
  46. Fan Y-H, He Z-Y, Zheng W-X, Hu L-T, Wang B-Y. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res 2023; 18(3): 560-7. doi: 10.4103/1673-5374.346551 PMID: 36018178
  47. Wang X, Huo R, Liang Z, et al. Simvastatin inhibits NLRP3 inflammasome activation and ameliorates lung injury in hyperoxia-induced bronchopulmonary dysplasia via the KLF2-mediated mechanism. Oxid Med Cell Longev 2022; 2022: 1-15. doi: 10.1155/2022/8336070 PMID: 35509841
  48. Li M, Li H, Fang F, Deng X, Ma S. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms. Neurosci Lett 2017; 639: 114-9. doi: 10.1016/j.neulet.2016.12.046 PMID: 28011393

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers