A Simple Score for Predicting Paroxysmal Atrial Fibrillation in Patients with Embolic Stroke of Undetermined Source in a Tunisian Cohort Study


Cite item

Full Text

Abstract

Background:The annualized recurrent stroke rate in patients with Embolic Stroke of Undetermined Source (ESUS) under antiplatelet therapy is around 4.5%. Only a fraction of these patients will develop atrial fibrillation (FA), to which a stroke can be attributed retrospectively. The challenge is to identify patients at risk of occult AF during follow-up.

Objectives:This work aims to determine clinical factors and electrocardiographic and ultrasound parameters that can predict occult AF in patients with ESUS and build a simple predictive score applicable worldwide.

Methods:This is a single-center, registry-based retrospective study conducted at the stroke unit of Sahloul University Hospital, Sousse, Tunisia, between January 2016 and December 2020. Consecutive patients meeting ESUS criteria were monitored for a minimum of one year, with a standardized follow-up consisting of outpatient visits, including ECG every three months and a new 24-hour Holter monitoring in case of palpitations. We performed multivariate stepwise regression to identify predictors of new paroxysmal AF among initial clinical, electrocardiographic (ECG and 24-hour Holter monitoring) and echocardiographic parameters. The coefficient of each independent covariate of the fitted multivariable model was used to generate an integerbased point-scoring system.

Results:Three hundred patients met the criteria for ESUS. Among them, 42 (14%) patients showed at least one episode of paroxysmal AF during a median follow-up of two years. In univariate analysis, age, gender, coronary artery disease, history of ischemic stroke, higher NIHSS at admission and lower NIHSS at discharge, abnormal P-wave axis, prolonged P-wave duration, premature atrial contractions (PAC) frequency of more than 500/24 hours, and left atrial (LA) mean area of more than 20 cm2 were associated with the risk of occurrence of paroxysmal AF. We proposed an AF predictive score based on (1.771 x NIHSS score at admission) + (10.015 x P-wave dispersion; coded 1 if yes and 0 if no) + (9.841x PAC class; coded 1 if ≥500 and 0 if no) + (9.828x LA class surface; coded 1 if ≥20 and 0 if no) + (0.548xNIHSS score at discharge) + 0.004. A score of ≥33 had a sensitivity of 76% and a specificity of 93%.

Conclusion:In this cohort of patients with ESUS, NIHSS at both admission and discharge, Pwave dispersion, PAC≥500/24h on a 24-hour Holter monitoring, and LA surface area≥20 cm2 provide a simple AF predictive score with very reasonable sensitivity and specificity and is applicable almost worldwide. An external validation of this score is ongoing.

About the authors

Sana Ben Amor

Stroke Unit, Department of Neurology, Centre Hospitalier Sahloul

Author for correspondence.
Email: info@benthamscience.net

Assil Achour

Cardiology Department, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Aymen Elhraiech

Department of Cardiology, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Emna Jarrar

Stroke Unit, Neurology Department, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Hela Ghali

Department of Prevention and Security of Care, Sahloul University Hospital

Email: info@benthamscience.net

Ons Ameur

Stroke Unit, Neurology Department, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Nesrine Amara

Stroke Unit, Neurology Department, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Anis Hassine

Stroke Unit, Neurology Department, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Houyem Saied

Department of Cardiology, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Eleys Neffati

Department of Cardiology,, Centre Hospitalier Sahloul

Email: info@benthamscience.net

Didier Smadja

Stroke Unit,, Centre Hospitalier Sud-Francilien

Email: info@benthamscience.net

References

  1. Feigin VL, Mensah GA, Norrving B, Murray CJL, Roth GA. Atlas of the global burden of stroke (1990-2013): The GBD 2013 study. Neuroepidemiology 2015; 45(3): 230-6. doi: 10.1159/000441106 PMID: 26505985
  2. Markus H. Personalising secondary prevention: Different treatments for different strokes. Pract Neurol 2020; 20(1): 34-8. PMID: 31484793
  3. Hart RG, Diener HC, Coutts SB, et al. Embolic strokes of undetermined source: The case for a new clinical construct. Lancet Neurol 2014; 13(4): 429-38. doi: 10.1016/S1474-4422(13)70310-7 PMID: 24646875
  4. Bhat A, Mahajan V, Chen HHL, Gan GCH, Pontes-Neto OM, Tan TC. Embolic stroke of undetermined source: Approaches in risk stratification for cardioembolism. Stroke 2021; 52(12): e820-36. doi: 10.1161/STROKEAHA.121.034498 PMID: 34706562
  5. Diener HC, Sacco RL, Easton JD, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med 2019; 380(20): 1906-17. doi: 10.1056/NEJMoa1813959 PMID: 31091372
  6. Hart RG, Sharma M, Mundl H, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med 2018; 378(23): 2191-201. doi: 10.1056/NEJMoa1802686 PMID: 29766772
  7. Dilaveris PE, Kennedy HL. Silent atrial fibrillation: Epidemiology, diagnosis, and clinical impact. Clin Cardiol 2017; 40(6): 413-8. doi: 10.1002/clc.22667 PMID: 28273368
  8. Sposato LA, Cipriano LE, Saposnik G, Vargas ER, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: A systematic review and meta-analysis. Lancet Neurol 2015; 14(4): 377-87. doi: 10.1016/S1474-4422(15)70027-X PMID: 25748102
  9. Spence JD. Cardioembolic stroke: Everything has changed. Stroke Vasc Neurol 2018; 3(2): 76-83. doi: 10.1136/svn-2018-000143 PMID: 30022801
  10. Haeusler KG, Tütüncü S, Schnabel RB. Detection of atrial fibrillation in cryptogenic stroke. Curr Neurol Neurosci Rep 2018; 18(10): 66. doi: 10.1007/s11910-018-0871-1 PMID: 30090997
  11. Khurshid R, Awais M, Malik J. Electrophysiology practice in low- and middle-income countries: An updated review on access to care and health delivery. Heart Rhythm 2023; 4(1): 69-77.
  12. Kwong C, Ling AY, Crawford MH, Zhao SX, Shah NH. A clinical score for predicting atrial fibrillation in patients with cryptogenic stroke or transient ischemic attack. Cardiology 2017; 138(3): 133-40. doi: 10.1159/000476030 PMID: 28654919
  13. Bahit MC, Sacco RL, Easton JD, Meyerhoff J, Cronin L, Kleine E. Predictors of atrial fibrillation development in patients with embolic stroke of undetermined source: An analysis of the RE-SPECT ESUS trial. Circulation 2021; 144(22): 1738-46.
  14. Healey JS, Gladstone DJ, Swaminathan B, et al. Recurrent stroke with rivaroxaban compared with aspirin according to predictors of atrial fibrillation. JAMA Neurol 2019; 76(7): 764-73. doi: 10.1001/jamaneurol.2019.0617 PMID: 30958508
  15. Johner N, Namdar M, Shah D. ECG: Interpretation and clinical significance of P-wave abnormalities . Rev Med Suisse 2018; 14(608): 1078-81. PMID: 29797853
  16. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28(1): 1-39.e14. doi: 10.1016/j.echo.2014.10.003 PMID: 25559473
  17. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2021; 42(5): 373-498. doi: 10.1093/eurheartj/ehaa612 PMID: 32860505
  18. Al Khathaami AM, Al Bdah B, Alnosair A, et al. Embolic stroke of undetermined source in Saudi Arabia: Prevalence, patient characteristics, and outcomes. J Stroke Cerebrovasc Dis 2019; 28(12): 104390. doi: 10.1016/j.jstrokecerebrovasdis.2019.104390 PMID: 31607440
  19. Khorvash F, Khalili M, Rezvani Habibabadi R, et al. Comparison of acute ischemic stroke evaluation and the etiologic subtypes between university and nonuniversity hospitals in Isfahan, Iran. Int J Stroke 2019; 14(6): 613-9. doi: 10.1177/1747493019828648 PMID: 30860455
  20. Perera KS, Vanassche T, Bosch J, et al. Embolic strokes of undetermined source: Prevalence and patient features in the ESUS Global Registry. Int J Stroke 2016; 11(5): 526-33. doi: 10.1177/1747493016641967 PMID: 27256472
  21. von Falkenhausen AS, Feil K, Sinner MF, et al. Atrial fibrillation risk assessment after embolic stroke of undetermined source. Ann Neurol 2023; 93(3): 479-88. doi: 10.1002/ana.26545 PMID: 36373166
  22. Rubiera M, Aires A, Antonenko K, et al. European Stroke Organisation (ESO) guideline on screening for subclinical atrial fibrillation after stroke or transient ischaemic attack of undetermined origin. Eur Stroke J 2022; 7(3): CVII-CXXXIX. doi: 10.1177/23969873221099478 PMID: 36082257
  23. Dilaveris PE, Antoniou CK, Caiani EG, et al. ESC working group on e-cardiology position paper: Accuracy and reliability of electrocardiogram monitoring in the detection of atrial fibrillation in cryptogenic stroke patients. EHJDH 2022; 3(3): 341-58. doi: 10.1093/ehjdh/ztac026 PMID: 36712155
  24. Sinha AM, Diener HC, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation (CRYSTAL AF): Design and rationale. Am Heart J 2010; 160(1): 36-41.e1. doi: 10.1016/j.ahj.2010.03.032 PMID: 20598970
  25. Carrington M, Providência R, Chahal CAA, Ricci F, Epstein AE, Gallina S. Monitoring and diagnosis of intermittent arrhythmias: Evidence-based guidance and role of novel monitoring strategies. Eur Heart J Open 2022; 2(6): oeac072.
  26. Cameron A, Cheng HK, Lee RP, et al. Biomarkers for atrial fibrillation detection after stroke. Neurology 2021; 97(18): e1775-89. doi: 10.1212/WNL.0000000000012769 PMID: 34504030
  27. Suissa L, Bertora D, Lachaud S, Mahagne MH. Score for the targeting of atrial fibrillation (STAF): A new approach to the detection of atrial fibrillation in the secondary prevention of ischemic stroke. Stroke 2009; 40(8): 2866-8. doi: 10.1161/STROKEAHA.109.552679 PMID: 19461041
  28. Uphaus T, Weber-Krüger M, Grond M, et al. Development and validation of a score to detect paroxysmal atrial fibrillation after stroke. Neurology 2019; 92(2): e115-24. doi: 10.1212/WNL.0000000000006727 PMID: 30530796
  29. Yoshioka K, Watanabe K, Zeniya S, et al. A score for predicting paroxysmal atrial fibrillation in acute stroke patients: iPAB score. J Stroke Cerebrovasc Dis 2015; 24(10): 2263-9. doi: 10.1016/j.jstrokecerebrovasdis.2015.06.019 PMID: 26190307
  30. Lee JD, Kuo YW, Lee CP, Huang YC, Lee M, Lee TH. Development and validation of a novel score for predicting paroxysmal atrial fibrillation in acute ischemic stroke. Int J Environ Res Public Health 2022; 19(12): 7277. doi: 10.3390/ijerph19127277 PMID: 35742524
  31. Ricci B, Chang AD, Hemendinger M, et al. A simple score that predicts paroxysmal atrial fibrillation on outpatient cardiac monitoring after embolic stroke of unknown source. J Stroke Cerebrovasc Dis 2018; 27(6): 1692-6. doi: 10.1016/j.jstrokecerebrovasdis.2018.01.028 PMID: 29501269
  32. Zhao SX, Ziegler PD, Crawford MH, Kwong C, Koehler JL, Passman RS. Evaluation of a clinical score for predicting atrial fibrillation in cryptogenic stroke patients with insertable cardiac monitors: Results from the CRYSTAL AF study. Ther Adv Neurol Disord 2019; 11(12): 1756286419842698. doi: 10.1177/1756286419842698
  33. Kneihsl M, Bisping E, Scherr D, et al. Predicting atrial fibrillation after cryptogenic stroke via a clinical risk score-a prospective observational study. Eur J Neurol 2022; 29(1): 149-57. doi: 10.1111/ene.15102 PMID: 34519135
  34. Dogan U, Dogan EA, Tekinalp M, et al. P-wave dispersion for predicting paroxysmal atrial fibrillation in acute ischemic stroke. Int J Med Sci 2012; 9(1): 108-14. doi: 10.7150/ijms.9.108 PMID: 22211098
  35. Pérez-Riera AR, de Abreu LC, Barbosa-Barros R, Grindler J, Fernandes-Cardoso A, Baranchuk A. P-wave dispersion: An update. Indian Pacing Electrophysiol J 2016; 16(4): 126-33. doi: 10.1016/j.ipej.2016.10.002 PMID: 27924760
  36. Chávez-González E, Donoiu I. Utility of P-wave dispersion in the prediction of atrial fibrillation. Curr Health Sci J 2017; 43(1): 5-11. PMID: 30595848
  37. Gladstone DJ, Dorian P, Spring M, et al. Atrial premature beats predict atrial fibrillation in cryptogenic stroke: Results from the EMBRACE trial. Stroke 2015; 46(4): 936-41. doi: 10.1161/STROKEAHA.115.008714 PMID: 25700289
  38. Miyazaki Y, Toyoda K, Iguchi Y, et al. Atrial fibrillation after ischemic stroke detected by chest strap-style 7-day holter monitoring and the risk predictors: EDUCATE-ESUS. J Atheroscler Thromb 2021; 28(5): 544-54. doi: 10.5551/jat.58420 PMID: 32801289
  39. Overvad TF, Nielsen PB, Larsen TB, Søgaard P. Left atrial size and risk of stroke in patients in sinus rhythm. A systematic review. Thromb Haemost 2016; 116(2): 206-19. PMID: 27075168
  40. Xu Y, Zhao L, Zhang L, Han Y, Wang P, Yu S. Left atrial enlargement and the risk of stroke: A meta-analysis of prospective cohort studies. Front Neurol 2020; 11: 26. doi: 10.3389/fneur.2020.00026 PMID: 32117002
  41. Tsang TSM, Abhayaratna WP, Barnes ME, et al. Prediction of cardiovascular outcomes with left atrial size: Is volume superior to area or diameter? J Am Coll Cardiol 2006; 47(5): 1018-23. doi: 10.1016/j.jacc.2005.08.077 PMID: 16516087

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers