Lower Melatonin Indicates Poor Short-term Prognosis in Patients with Acute Ischemic Stroke

  • Authors: Sun Q.1, Chen S.2, Yu S.3, Wang F.4, Fu X.3, Chen R.5, Li J.3
  • Affiliations:
    1. Department of Neurology and Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University,
    2. Department of Neurology and Clinical Research Center of Neurological Disease,, Second Affiliated Hospital of Soochow University
    3. Department of Neurology and Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University
    4. Department of Clinical Research Center of Neurological Disease, Soochow University
    5. Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University
  • Issue: Vol 21, No 2 (2024)
  • Pages: 148-156
  • Section: Medicine
  • URL: https://permmedjournal.ru/1567-2026/article/view/644324
  • DOI: https://doi.org/10.2174/0115672026302380240307091232
  • ID: 644324

Cite item

Full Text

Abstract

Aims:We evaluated endogenous melatonin levels in the acute phase of cerebral infarction and explored the impact of possible changes in melatonin levels on the prognosis of patients.

Methods:This study recruited acute ischemic stroke (AIS) patients from the Department of the Second Affiliated Hospital of Soochow University between December 2019 and June 2021, along with healthy control subjects. Salivary melatonin samples were collected from each participant between 7 pm and 10 pm, and fasting plasma was collected the following morning to measure the levels of inflammatory markers. The prognosis was assessed through follow-up three months after discharge. The relationship between melatonin levels and plasma inflammatory markers was assessed, followed by an analysis of the effect of melatonin levels on patient prognosis.

Results:The study enrolled a total of 160 participants, including 120 AIS patients aged 50 years or older (61.7% male) and 40 age-matched controls (55.0% male). The AIS group exhibited lower salivary melatonin levels at 19 (P = 0.002), 20 (p < 0.001), 21 (p < 0.001), and 22 (p < 0.001) o’clock, and the average melatonin level was also lower (p < 0.001). Logistic regression analysis models indicated an association between low melatonin levels and poor prognosis. Salivary melatonin levels demonstrated good predictive ability for the prognosis of AIS patients.

Conclusion:Melatonin levels were lower in AIS patients compared to controls. In addition, lower melatonin levels were associated with a poorer prognosis among AIS patients.

About the authors

Qian Sun

Department of Neurology and Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University,

Email: info@benthamscience.net

Sheng-nan Chen

Department of Neurology and Clinical Research Center of Neurological Disease,, Second Affiliated Hospital of Soochow University

Email: info@benthamscience.net

Si-yuan Yu

Department of Neurology and Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University

Email: info@benthamscience.net

Fen Wang

Department of Clinical Research Center of Neurological Disease, Soochow University

Email: info@benthamscience.net

Xiang Fu

Department of Neurology and Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University

Email: info@benthamscience.net

Rui Chen

Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University

Email: info@benthamscience.net

Jie Li

Department of Neurology and Clinical Research Center of Neurological Disease, Second Affiliated Hospital of Soochow University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Collaborators GBDN. Global, regional, and national burden of neurological disorders, 1990- 2016: A systematic analysis for the global burden of disease study. Lancet Neurol 2016; 18(5): 459-80. doi: 10.1016/s1474-4422(18)30499-x
  2. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 2009; 4(6): 461-70. doi: 10.1111/j.1747-4949.2009.00387.x
  3. Yuan K, Jin X, Mo X, et al. Novel diagnostic biomarkers of oxidative stress, ferroptosis, immune infiltration characteristics and experimental validation in ischemic stroke. Aging 2024; 16(1): 746-61. doi: 10.18632/aging.205415 PMID: 38198162
  4. Sacco S, Harriott AM, Ayata C, et al. Microembolism and other links between migraine and stroke. Neurology 2023; 100(15): 716-26. doi: 10.1212/WNL.0000000000201699 PMID: 36522158
  5. Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: A potential therapeutic target for stroke. Neural Regen Res 2024; 19(5): 988-97. doi: 10.4103/1673-5374.385284 PMID: 37862200
  6. Skene DJ, Arendt J. Human circadian rhythms: Physiological and therapeutic relevance of light and melatonin. Ann Clin Biochem 2006; 43(5): 344-53. doi: 10.1258/000456306778520142 PMID: 17022876
  7. Arendt J, Bojkowski C, Folkard S, et al. Some effects of melatonin and the control of its secretion in humans. Ciba Found Symp 1985; 117: 266-83. doi: 10.1002/9780470720981.ch16 PMID: 3836818
  8. Atanassova PA, Terzieva DD, Dimitrov BD. Impaired nocturnal melatonin in acute phase of ischaemic stroke: Cross-sectional matched case-control analysis. J Neuroendocrinol 2009; 21(7): 657-63. doi: 10.1111/j.1365-2826.2009.01881.x PMID: 19453822
  9. Adamczak-Ratajczak A, Kupsz J, Owecki M, Zielonka D, Sowinska A, Checinska-Maciejewska Z, et al. Circadian rhythms of melatonin and cortisol in manifest Huntington’s d isease and in acute cortical ischemic stroke. J Physiol Pharmacol 2017; 68(4): 539-46.
  10. Chern CM, Liao JF, Wang YH, Shen YC. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic Biol Med 2012; 52(9): 1634-47. doi: 10.1016/j.freeradbiomed.2012.01.030 PMID: 22330064
  11. Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44(7): 2064-89. doi: 10.1161/STR.0b013e318296aeca PMID: 23652265
  12. Kwah LK, Diong J. National institutes of health stroke scale (NIHSS). J Physiother 2014; 60(1): 61. doi: 10.1016/j.jphys.2013.12.012 PMID: 24856948
  13. Adams HP Jr, Woolson RF, Clarke WR, et al. Design of the trial of Org 10172 in acute stroke treatment (TOAST). Control Clin Trials 1997; 18(4): 358-77. doi: 10.1016/S0197-2456(97)00012-3 PMID: 9257073
  14. Bamford J, Sandercock P, Dennis M, Warlow C, Burn J. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991; 337(8756): 1521-6. doi: 10.1016/0140-6736(91)93206-O PMID: 1675378
  15. Burton L, Tyson S. Screening for cognitive impairment after stroke: A systematic review of psychometric properties and clinical utility. J Rehabil Med 2015; 47(3): 193-203. doi: 10.2340/16501977-1930 PMID: 25590458
  16. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23(1): 56-62. doi: 10.1136/jnnp.23.1.56 PMID: 14399272
  17. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol 1959; 32(1): 50-5. doi: 10.1111/j.2044-8341.1959.tb00467.x PMID: 13638508
  18. Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res 1989; 28(2): 193-213. doi: 10.1016/0165-1781(89)90047-4 PMID: 2748771
  19. Benloucif S, Burgess HJ, Klerman EB, et al. Measuring melatonin in humans. J Clin Sleep Med 2008; 4(1): 66-9. doi: 10.5664/jcsm.27083 PMID: 18350967
  20. Rzepka-Migut B, Paprocka J. Melatonin-measurement methods and the factors modifying the results. A systematic review of the literature. Int J Environ Res Public Health 2020; 17(6): 1916. doi: 10.3390/ijerph17061916 PMID: 32183489
  21. Kasner SE. Clinical interpretation and use of stroke scales. Lancet Neurol 2006; 5(7): 603-12. doi: 10.1016/S1474-4422(06)70495-1 PMID: 16781990
  22. Ritzenthaler T, Nighoghossian N, Berthiller J, et al. Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. J Pineal Res 2009; 46(3): 349-52. doi: 10.1111/j.1600-079X.2009.00670.x PMID: 19317798
  23. Ritzenthaler T, Lhommeau I, Douillard S, et al. Dynamics of oxidative stress and urinary excretion of melatonin and its metabolites during acute ischemic stroke. Neurosci Lett 2013; 544: 1-4. doi: 10.1016/j.neulet.2013.02.073 PMID: 23562888
  24. Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J. Reperfusion injury following cerebral ischemia: Pathophysiology, MR imaging, and potential therapies. Neuroradiology 2007; 49(2): 93-102. doi: 10.1007/s00234-006-0183-z PMID: 17177065
  25. Andrabi SS, Parvez S, Tabassum H. Melatonin and ischemic stroke: Mechanistic roles and action. Adv Pharmacol Sci 2015; 2015: 1-11. doi: 10.1155/2015/384750 PMID: 26435711
  26. Omar T. Karakayalı M, Yesin M, Alaydın HC, Karabağ Y, Gümüşdağ A. Monocyte to high-density lipoprotein cholesterol ratio is associated w ith the presence of carotid artery disease in acute ischemic stroke. Biomarkers Med 2021; 15(7): 489-95.
  27. Aslan S, Demir AR, Demir Y, et al. Usefulness of plateletcrit in the prediction of major adverse cardiac and cerebrovascular events in patients with carotid artery stenosis. Vascular 2019; 27(5): 479-86. doi: 10.1177/1708538119847898 PMID: 31027469
  28. Lorente L, Martín M, Abreu-González P, et al. Higher serum melatonin levels during the first week of malignant middle cerebral artery infarction in non-surviving patients. Brain Sci 2019; 9(12): 346. doi: 10.3390/brainsci9120346 PMID: 31795260
  29. Koh PO. Melatonin regulates the calcium-buffering proteins, parvalbumin and hippocalcin, in ischemic brain injury. J Pineal Res 2012; 53(4): 358-65. doi: 10.1111/j.1600-079X.2012.01005.x PMID: 22639951
  30. Cuzzocrea S, Costantino G, Gitto E, et al. Protective effects of melatonin in ischemic brain injury. J Pineal Res 2000; 29(4): 217-27. doi: 10.1034/j.1600-0633.2002.290404.x PMID: 11068944
  31. Chitimus DM, Popescu MR, Voiculescu SE, et al. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules 2020; 10(9): 1211. doi: 10.3390/biom10091211 PMID: 32825327

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers