Hereditary Rickets: A Quick Guide for the Pediatrician


Cite item

Full Text

Abstract

With the increased discovery of genes implicated in vitamin D metabolism and the regu-lation of calcium and phosphate homeostasis, a growing number of genetic forms of rickets are now recognized. These are categorized into calciopenic and phosphopenic rickets. Calciopenic forms of hereditary rickets are caused by genetic mutations that alter the enzymatic activity in the vitamin D activation pathway or impair the vitamin D receptor action. Hereditary forms of phosphopenic rick-ets, on the other hand, are caused by genetic mutations that lead to increased expression of FGF23 hormone or that impair the absorptive capacity of phosphate at the proximal renal tubule. Due to the clinical overlap between acquired and genetic forms of rickets, identifying children with hereditary rickets can be challenging. A clear understanding of the molecular basis of hereditary forms of rick-ets and their associated biochemical patterns allow the health care provider to assign the correct di-agnosis, avoid non-effective interventions and shorten the duration of the diagnostic journey in these children. In this mini-review, known forms of hereditary rickets listed on the Online Mendeli-an Inheritance in Man database are discussed. Further, a clinical approach to identify and diagnose children with hereditary forms of rickets is suggested.

About the authors

Abdulmajeed AlSubaihin

Department of Pediatrics, College of Medicine, King Saud University

Author for correspondence.
Email: info@benthamscience.net

Jennifer Harrington

Division of Endocrinology, Women's and Children's Health Network

Email: info@benthamscience.net

References

  1. Cone TE Jr. A rachitic infant painted by Burgkmair 136 years before Dr. Whistler described rickets. Clin Pediatr 1980; 19(3): 194. doi: 10.1177/000992288001900305 PMID: 6987020
  2. Clarke E. Whistler and Glisson on rickets. Bull Hist Med 1962; 36: 45-61. PMID: 13879755
  3. Dunn PM. Francis Glisson (1597-1677) and the "discovery" of rickets. Arch Dis Child Fetal Neonatal Ed 1998; 78(2): F154-5. doi: 10.1136/fn.78.2.F154 PMID: 9577290
  4. Friedman A. A brief history of rickets. Pediatr Nephrol 2020; 35(10): 1835-41. doi: 10.1007/s00467-019-04366-9 PMID: 31654223
  5. Creo AL, Thacher TD, Pettifor JM, Strand MA, Fischer PR. Nutritional rickets around the world: An update. Paediatr Int Child Health 2017; 37(2): 84-98. doi: 10.1080/20469047.2016.1248170 PMID: 27922335
  6. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 2009; 160(3): 491-7. doi: 10.1530/EJE-08-0818 PMID: 19095780
  7. Wheeler BJ, Dickson NP, Houghton LA, Ward LM, Taylor BJ. Incidence and characteristics of vitamin D deficiency rickets in New Zea-land children: a New Zealand Paediatric Surveillance Unit study. Aust N Z J Public Health 2015; 39(4): 380-3. doi: 10.1111/1753-6405.12390 PMID: 26122859
  8. Munns CF, Simm PJ, Rodda CP, et al. Incidence of vitamin D deficiency rickets among Australian children: An Australian Paediatric Sur-veillance Unit study. Med J Aust 2012; 196(7): 466-8. doi: 10.5694/mja11.10662 PMID: 22509879
  9. Julies P, Lynn RM, Pall K, et al. Nutritional rickets under 16 years: UK surveillance results. Arch Dis Child 2020; 105(6): 587-92. doi: 10.1136/archdischild-2019-317934 PMID: 31949032
  10. Kubota T, Nakayama H, Kitaoka T, et al. Incidence rate and characteristics of symptomatic vitamin D deficiency in children: A nationwide survey in Japan. Endocr J 2018; 65(6): 593-9. doi: 10.1507/endocrj.EJ18-0008 PMID: 29526992
  11. Ward LM, Gaboury I, Ladhani M, Zlotkin S. Vitamin D-deficiency rickets among children in Canada. CMAJ 2007; 177(2): 161-6. doi: 10.1503/cmaj.061377 PMID: 17600035
  12. Meyer HE, Skram K, Berge IA, Madar AA, Bjørndalen HJ. Nutritional rickets in Norway: A nationwide register-based cohort study. BMJ Open 2017; 7(5): e015289. doi: 10.1136/bmjopen-2016-015289 PMID: 28554929
  13. An online catalog of human genes and genetic disorder: Available from: www.omim.org (Accessed on: Jan 1, 2022).
  14. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014; 21(3): 319-29. doi: 10.1016/j.chembiol.2013.12.016 PMID: 24529992
  15. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA 2004; 101(20): 7711-5. doi: 10.1073/pnas.0402490101 PMID: 15128933
  16. Al Mutair AN, Nasrat GH, Russell DW. Mutation of the CYP2R1 vitamin D 25-hydroxylase in a Saudi Arabian family with severe vitamin D deficiency. J Clin Endocrinol Metab 2012; 97(10): E2022-5. doi: 10.1210/jc.2012-1340 PMID: 22855339
  17. Molin A, Wiedemann A, Demers N, et al. Vitamin D-dependent rickets type 1B (25-Hydroxylase Deficiency): A rare condition or a misdi-agnosed condition? J Bone Miner Res 2017; 32(9): 1893-9. doi: 10.1002/jbmr.3181 PMID: 28548312
  18. Thacher TD, Fischer PR, Singh RJ, Roizen J, Levine MA. CYP2R1 Mutations impair generation of 25-hydroxyvitamin D and cause an atypical form of vitamin D deficiency. J Clin Endocrinol Metab 2015; 100(7): E1005-13. doi: 10.1210/jc.2015-1746 PMID: 25942481
  19. Ozden A, Doneray H, Turkyilmaz A. Two novel CYP2R1 mutations in a family with vitamin D-dependent rickets type 1b. Endocrine 2021; 72(3): 852-64. doi: 10.1007/s12020-021-02670-9 PMID: 33715104
  20. Thacher TD, Levine MA. CYP2R1 mutations causing vitamin D-deficiency rickets. J Steroid Biochem Mol Biol 2017; 173: 333-6. doi: 10.1016/j.jsbmb.2016.07.014 PMID: 27473561
  21. Bakhamis S, Imtiaz F, Ramzan K, et al. 25-Hydroxylase vitamin D deficiency in 27 Saudi Arabian subjects: A clinical and molecular re-port on CYP2R1 mutations. Endocr Connect 2021; 10(7): 767-75. doi: 10.1530/EC-21-0102 PMID: 34137732
  22. Fu GK, Lin D, Zhang MY, et al. Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 1997; 11(13): 1961-70. PMID: 9415400
  23. Kitanaka S, Takeyama K, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998; 338(10): 653-62. doi: 10.1056/NEJM199803053381004 PMID: 9486994
  24. Koek WNH, Zillikens MC, van der Eerden BCJ, van Leeuwen JPTM. Novel compound heterozygous mutations in the CYP27B1 gene lead to pseudovitamin D-deficient rickets. Calcif Tissue Int 2016; 99(3): 326-31. doi: 10.1007/s00223-016-0165-z PMID: 27364341
  25. Edouard T, Alos N, Chabot G, Roughley P, Glorieux FH, Rauch F. Short- and long-term outcome of patients with pseudo-vitamin D defi-ciency rickets treated with calcitriol. J Clin Endocrinol Metab 2011; 96(1): 82-9. doi: 10.1210/jc.2010-1340 PMID: 20926527
  26. Demir K, Kattan WE, Zou M, et al. Novel CYP27B1 gene mutations in patients with vitamin D-dependent rickets type 1A. PLoS One 2015; 10(7): e0131376. doi: 10.1371/journal.pone.0131376 PMID: 26132292
  27. Tahir S, Demirbilek H, Ozbek MN, Baran RT, Tanriverdi S, Hussain K. Genotype and phenotype characteristics in 22 patients with vita-min D-dependent rickets type I. Horm Res Paediatr 2016; 85(5): 309-17. doi: 10.1159/000444483 PMID: 26982175
  28. Dursun F, Özgürhan G, Kırmızıbekmez H, Keskin E, Hacıhamdioğlu B. Genetic and clinical characteristics of patients with vitamin D de-pendent rickets type 1A. J Clin Res Pediatr Endocrinol 2019; 11(1): 34-40. doi: 10.4274/jcrpe.galenos.2018.2018.0121 PMID: 30282619
  29. Kim YM, Jang YY, Jeong JE, Park HJ, Jang JH, Kim JK. A case of vitamin D hydroxylation-deficient rickets type 1A caused by 2 novel pathogenic variants in CYP27B1 gene. Ann Pediatr Endocrinol Metab 2019; 24(2): 137-41. doi: 10.6065/apem.2019.24.2.137 PMID: 31261480
  30. Li Y, Yuan X, Chen R, et al. Clinical and genetic analysis of two Chinese families with vitamin D-dependent rickets type IA and follow-up. Orphanet J Rare Dis 2020; 15(1): 273. doi: 10.1186/s13023-020-01558-7 PMID: 33004071
  31. Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1alpha-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res 1999; 14(5): 730-9. doi: 10.1359/jbmr.1999.14.5.730 PMID: 10320521
  32. Chen H, Hewison M, Adams JS. Functional characterization of heterogeneous nuclear ribonuclear protein C1/C2 in vitamin D resistance: A novel response element-binding protein. J Biol Chem 2006; 281(51): 39114-20. doi: 10.1074/jbc.M608006200 PMID: 17071612
  33. Feldman D, J Malloy P. Mutations in the vitamin D receptor and hereditary vitamin D-resistant rickets. Bonekey Rep 2014; 3: 510. doi: 10.1038/bonekey.2014.5 PMID: 24818002
  34. Christakos S. Recent advances in our understanding of 1,25-dihydroxyvitamin D3 regulation of intestinal calcium absorption. Arch Biochem Biophys 2012; 523(1): 73-6. doi: 10.1016/j.abb.2011.12.020 PMID: 22230327
  35. Isojima T, Ishizawa M, Yoshimura K, et al. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR) caused by a VDR mutation: A novel mechanism of dominant inheritance. Bone Rep 2015; 2: 68-73. doi: 10.1016/j.bonr.2015.05.001 PMID: 28377956
  36. Zhou Y, Wang J, Malloy PJ, Dolezel Z, Feldman D. Compound heterozygous mutations in the vitamin D receptor in a patient with heredi-tary 1,25-dihydroxyvitamin D-resistant rickets with alopecia. J Bone Miner Res 2009; 24(4): 643-51. doi: 10.1359/jbmr.081216 PMID: 19049339
  37. Malloy PJ, Zhou Y, Wang J, Hiort O, Feldman D. Hereditary vitamin D-resistant rickets (HVDRR) owing to a heterozygous mutation in the vitamin D receptor. J Bone Miner Res 2011; 26(11): 2710-8. doi: 10.1002/jbmr.484 PMID: 21812032
  38. Malloy PJ, Tasic V, Taha D, et al. Vitamin D receptor mutations in patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Mol Genet Metab 2014; 111(1): 33-40. doi: 10.1016/j.ymgme.2013.10.014 PMID: 24246681
  39. Ben Ameur S, Silve C, Chabchoub I, et al. Clinical and genetic characterization of tunisian children with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Horm Res Paediatr 2017; 87(1): 23-9. doi: 10.1159/000452886 PMID: 28013309
  40. Faiyaz-Ul-Haque M, AlDhalaan W, AlAshwal A, et al. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR): Clinical heteroge-neity and long-term efficacious management of eight patients from four unrelated Arab families with a loss of function VDR mutation. J Pediatr Endocrinol Metab 2018; 31(8): 861-8. doi: 10.1515/jpem-2017-0312 PMID: 29949513
  41. Arita K, Nanda A, Wessagowit V, Akiyama M, Alsaleh QA, McGrath JA. A novel mutation in the VDR gene in hereditary vitamin D-resistant rickets. Br J Dermatol 2008; 158(1): 168-71. PMID: 17970811
  42. Ersoy B, Kiremitci S, Isojima T, Kitanaka S. Successful intermittent intravenous calcium treatment via the peripheral route in a patient with hereditary vitamin D-resistant rickets and alopecia. Horm Res Paediatr 2015; 83(1): 67-72. doi: 10.1159/000367711 PMID: 25573344
  43. Ma NS, Malloy PJ, Pitukcheewanont P, Dreimane D, Geffner ME, Feldman D. Hereditary vitamin D resistant rickets: Identification of a novel splice site mutation in the vitamin D receptor gene and successful treatment with oral calcium therapy. Bone 2009; 45(4): 743-6. doi: 10.1016/j.bone.2009.06.003 PMID: 19523546
  44. Abalı S, Tamura M, Turan S, et al. Hereditary vitamin D-resistant rickets: A report of four cases with two novel variants in the VDR gene and successful use of intermittent intravenous calcium via a peripheral route. J Pediatr Endocrinol Metab 2020; 33(4): 557-62. doi: 10.1515/jpem-2019-0466 PMID: 32049653
  45. Lucas J, Badia JL, Lucas E, Remon A. Cinacalcet treatment experience in hereditary vitamin D resistant rickets. J Pediatr Endocrinol Metab 2020; 33(2): 313-8. doi: 10.1515/jpem-2019-0258 PMID: 31926093
  46. Nicolescu RC, Lombet J, Cavalier E. Vitamin D-resistant rickets and cinacalcet—one more favorable experience. Front Pediatr 2018; 6: 376. doi: 10.3389/fped.2018.00376 PMID: 30555810
  47. Gardezi SA, Nguyen C, Malloy PJ, Posner GH, Feldman D, Peleg S. A rationale for treatment of hereditary vitamin D-resistant rickets with analogs of 1 alpha,25-dihydroxyvitamin D(3). J Biol Chem 2001; 276(31): 29148-56. doi: 10.1074/jbc.M100898200 PMID: 11369766
  48. Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism. Int J Mol Sci 2020; 21(18): 6573. doi: 10.3390/ijms21186573 PMID: 32911795
  49. Roizen JD, Li D, O’Lear L, et al. CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest 2018; 128(5): 1913-8. doi: 10.1172/JCI98680 PMID: 29461981
  50. Ho BB, Bergwitz C. FGF23 signalling and physiology. J Mol Endocrinol 2021; 66(2): R23-32. doi: 10.1530/JME-20-0178 PMID: 33338030
  51. Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 2010; 299(2): F285-96. doi: 10.1152/ajprenal.00508.2009 PMID: 20534868
  52. Beck-Nielsen SS, Mughal Z, Haffner D, et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14(1): 58. doi: 10.1186/s13023-019-1014-8 PMID: 30808384
  53. Gaucher C, Walrant-Debray O, Nguyen TM, Esterle L, Garabédian M, Jehan F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet 2009; 125(4): 401-11. doi: 10.1007/s00439-009-0631-z PMID: 19219621
  54. Lin X, Li S, Zhang Z, Yue H. Clinical and genetic characteristics of 153 Chinese patients with x-linked hypophosphatemia. Front Cell Dev Biol 2021; 9: 617738. doi: 10.3389/fcell.2021.617738 PMID: 34141703
  55. Zheng B, Wang C, Chen Q, et al. Functional characterization of PHEX gene variants in children with X ‐linked hypophosphatemic rickets shows no evidence of genotype-phenotype correlation. J Bone Miner Res 2020; 35(9): 1718-25. doi: 10.1002/jbmr.4035 PMID: 32329911
  56. Park PG, Lim SH, Lee H, Ahn YH, Cheong HI, Kang HG. Genotype and phenotype analysis in x-linked hypophosphatemia. Front Pediatr 2021; 9: 699767. doi: 10.3389/fped.2021.699767 PMID: 34434907
  57. Baroncelli GI, Mora S. X-linked hypophosphatemic rickets: Multisystemic disorder in children requiring multidisciplinary management. Front Endocrinol 2021; 12: 688309. doi: 10.3389/fendo.2021.688309 PMID: 34421819
  58. Vega RA, Opalak C, Harshbarger RJ, et al. Hypophosphatemic rickets and craniosynostosis: A multicenter case series. J Neurosurg Pediatr 2016; 17(6): 694-700. doi: 10.3171/2015.10.PEDS15273 PMID: 26824597
  59. Houillier P, Salles JP. Biochemical assessment of phosphate homeostasis. Arch Pediatr 2021; 28(7): 588-93. doi: 10.1016/j.arcped.2021.09.001 PMID: 34598836
  60. Drezner MK, Lyles KW, Haussler MR, Harrelson JM. Evaluation of a role for 1,25-dihydroxyvitamin D3 in the pathogenesis and treat-ment of X-linked hypophosphatemic rickets and osteomalacia. J Clin Invest 1980; 66(5): 1020-32. doi: 10.1172/JCI109930 PMID: 6253520
  61. Haffner D, Emma F, Eastwood DM, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophos-phataemia. Nat Rev Nephrol 2019; 15(7): 435-55. doi: 10.1038/s41581-019-0152-5 PMID: 31068690
  62. White KE, Evans WE, O’Riordan JLH, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000; 26(3): 345-8. doi: 10.1038/81664 PMID: 11062477
  63. Shimada T, Muto T, Urakawa I, et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to prote-olytic cleavage and causes hypophosphatemia in vivo. Endocrinology 2002; 143(8): 3179-82. doi: 10.1210/endo.143.8.8795 PMID: 12130585
  64. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int 2001; 60(6): 2079-86. doi: 10.1046/j.1523-1755.2001.00064.x PMID: 11737582
  65. Mameli C, Sangiorgio A, Colombo V, et al. Autosomal dominant hypophosphatemic rickets: A case report and review of the literature. Int J Environ Res Public Health 2021; 18(16): 8771. doi: 10.3390/ijerph18168771 PMID: 34444516
  66. Gribaa M, Younes M, Bouyacoub Y, et al. An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab 2010; 28(1): 111-5. doi: 10.1007/s00774-009-0111-5 PMID: 19655082
  67. Sandal S, Arora V, Verma IC. Hypophosphatemic rickets with R179W mutation in FGFR23 gene - a rare but treatable cause of refractory rickets. Indian J Pediatr 2021; 88(1): 61-3. doi: 10.1007/s12098-020-03335-7 PMID: 32415663
  68. Liu C, Zhao Z, Wang O, et al. Earlier onset in autosomal dominant hypophosphatemic rickets of R179 than R176 mutations in fibroblast growth factor 23: Report of 20 Chinese cases and review of the literature. Calcif Tissue Int 2019; 105(5): 476-86. doi: 10.1007/s00223-019-00597-y PMID: 31486862
  69. Kapelari K, Köhle J, Kotzot D, Högler W. Iron supplementation associated with loss of phenotype in autosomal dominant hypophos-phatemic rickets. J Clin Endocrinol Metab 2015; 100(9): 3388-92. doi: 10.1210/jc.2015-2391 PMID: 26186302
  70. Liu C, Li X, Zhao Z, et al. Iron deficiency plays essential roles in the trigger, treatment, and prognosis of autosomal dominant hypophos-phatemic rickets. Osteoporos Int 2021; 32(4): 737-45. doi: 10.1007/s00198-020-05649-w PMID: 32995940
  71. Imel EA, Liu Z, Coffman M, Acton D, Mehta R, Econs MJ. Oral iron replacement normalizes fibroblast growth factor 23 in iron‐deficient patients with autosomal dominant hypophosphatemic rickets. J Bone Miner Res 2020; 35(2): 231-8. doi: 10.1002/jbmr.3878 PMID: 31652009
  72. Lorenz-Depiereux B, Bastepe M, Benet-Pagès A, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone ma-trix protein in the regulation of phosphate homeostasis. Nat Genet 2006; 38(11): 1248-50. doi: 10.1038/ng1868 PMID: 17033625
  73. Mäkitie O, Pereira RC, Kaitila I, et al. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Miner Res 2010; 25(10): 2165-74. doi: 10.1002/jbmr.105 PMID: 20499351
  74. Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006; 38(11): 1310-5. doi: 10.1038/ng1905 PMID: 17033621
  75. Levy-Litan V, Hershkovitz E, Avizov L, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 2010; 86(2): 273-8. doi: 10.1016/j.ajhg.2010.01.010 PMID: 20137772
  76. Höppner J, Kornak U, Sinningen K, Rutsch F, Oheim R, Grasemann C. Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) due to ENPP1-deficiency. Bone 2021; 153: 116111. doi: 10.1016/j.bone.2021.116111 PMID: 34252603
  77. Brachet C, Mansbach AL, Clerckx A, Deltenre P, Heinrichs C. Hearing loss is part of the clinical picture of ENPP1 loss of function muta-tion. Horm Res Paediatr 2014; 81(1): 63-6. doi: 10.1159/000354661 PMID: 24216977
  78. Kotwal A, Ferrer A, Kumar R, et al. Clinical and biochemical phenotypes in a family with ENPP1 mutations. J Bone Miner Res 2020; 35(4): 662-70. doi: 10.1002/jbmr.3938 PMID: 31826312
  79. Kinoshita Y, Hori M, Taguchi M, Fukumoto S. Functional analysis of mutant FAM20C in Raine syndrome with FGF23-related hypophos-phatemia. Bone 2014; 67: 145-51. doi: 10.1016/j.bone.2014.07.009 PMID: 25026495
  80. Seidahmed MZ, Alazami AM, Abdelbasit OB, et al. Report of a case of Raine syndrome and literature review. Am J Med Genet A 2015; 167(10): 2394-8. doi: 10.1002/ajmg.a.37159 PMID: 25974638
  81. Faundes V, Castillo-Taucher S, Gonzalez-Hormazabal P, Chandler K, Crosby A, Chioza B. Raine syndrome: An overview. Eur J Med Genet 2014; 57(9): 536-42. doi: 10.1016/j.ejmg.2014.07.001 PMID: 25019372
  82. Rafaelsen SH, Raeder H, Fagerheim AK, et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res 2013; 28(6): 1378-85. doi: 10.1002/jbmr.1850 PMID: 23325605
  83. Mameli C, Zichichi G, Mahmood N, et al. Natural history of non-lethal Raine syndrome during childhood. Orphanet J Rare Dis 2020; 15(1): 93. doi: 10.1186/s13023-020-01373-0 PMID: 32299476
  84. Eltan M, Alavanda C, Yavas Abali Z, et al. A rare cause of hypophosphatemia: Raine syndrome changing clinical features with age. Calcif Tissue Int 2020; 107(1): 96-103. doi: 10.1007/s00223-020-00694-3 PMID: 32337609
  85. White KE, Cabral JM, Davis SI, et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 2005; 76(2): 361-7. doi: 10.1086/427956 PMID: 15625620
  86. Kuthiroly S, Yesodharan D, Ghosh A, White K, Nampoothiri S. Osteoglophonic dysplasia: Phenotypic and radiological clues. J Pediatr Genet 2017; 6(4): 247-51. doi: 10.1055/s-0037-1602816 PMID: 29147600
  87. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 2011; 26(7): 1381-8. doi: 10.1002/jbmr.340 PMID: 21538511
  88. Al Juraibah F, Al Amiri E, Al Dubayee M, et al. Diagnosis and management of X-linked hypophosphatemia in children and adolescent in the Gulf Cooperation Council countries. Arch Osteoporos 2021; 16(1): 52. doi: 10.1007/s11657-021-00879-9 PMID: 33660084
  89. Carpenter TO, Whyte MP, Imel EA, et al. Burosumab therapy in children with x-linked hypophosphatemia. N Engl J Med 2018; 378(21): 1987-98. doi: 10.1056/NEJMoa1714641 PMID: 29791829
  90. Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A ran-domised, active-controlled, open-label, phase 3 trial. Lancet 2019; 393(10189): 2416-27. doi: 10.1016/S0140-6736(19)30654-3 PMID: 31104833
  91. Levi M, Gratton E, Forster IC, et al. Mechanisms of phosphate transport. Nat Rev Nephrol 2019; 15(8): 482-500. doi: 10.1038/s41581-019-0159-y PMID: 31168066
  92. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 2006; 78(2): 193-201. doi: 10.1086/499410 PMID: 16358215
  93. Dasgupta D, Wee MJ, Reyes M, et al. Mutations in SLC34A3/ NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol 2014; 25(10): 2366-75. doi: 10.1681/ASN.2013101085 PMID: 24700880
  94. Tencza AL, Ichikawa S, Dang A, et al. Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/type IIc sodium-phosphate cotransporter: Presentation as hypercalciuria and nephrolithiasis. J Clin Endocrinol Metab 2009; 94(11): 4433-8. doi: 10.1210/jc.2009-1535 PMID: 19820004
  95. Mejia-Gaviria N, Gil-Peña H, Coto E, Pérez-Menéndez TM, Santos F. Genetic and clinical peculiarities in a new family with hereditary hypophosphatemic rickets with hypercalciuria: A case report. Orphanet J Rare Dis 2010; 5(1): 1. doi: 10.1186/1750-1172-5-1 PMID: 20074341
  96. Phulwani P, Bergwitz C, Jaureguiberry G, Rasoulpour M, Estrada E. Hereditary hypophosphatemic rickets with hypercalciuria and nephro-lithiasis-Identification of a novel SLC34A3/NaPi-IIc mutation. Am J Med Genet A 2011; 155(3): 626-33. doi: 10.1002/ajmg.a.33832 PMID: 21344632
  97. Gordon RJ, Li D, Doyle D, Zaritsky J, Levine MA. Digenic heterozygous mutations in SLC34A3 and SLC34A1 cause dominant hypo-phosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab 2020; 105(7): 2392-400. doi: 10.1210/clinem/dgaa217 PMID: 32311027
  98. Turan I, Erdem S, Kotan LD, et al. Experience with the targeted next-generation sequencing in the diagnosis of hereditary hypophos-phatemic rickets. J Pediatr Endocrinol Metab 2021; 34(5): 639-48. doi: 10.1515/jpem-2020-0624 PMID: 33852231
  99. Cebeci AN, Zou M, BinEssa HA, et al. Mutation of SGK3, a novel regulator of renal phosphate transport, causes autosomal dominant hypophosphatemic rickets. J Clin Endocrinol Metab 2020; 105(6): 1840-50. doi: 10.1210/clinem/dgz260 PMID: 31821448
  100. Trepiccione F, Capasso G. SGK3: A novel regulator of renal phosphate transport? Kidney Int 2011; 80(1): 13-5. doi: 10.1038/ki.2011.60 PMID: 21673735
  101. Hawkes CP, Li D, Hakonarson H, Meyers KE, Thummel KE, Levine MA. CYP3A4 induction by rifampin: An alternative pathway for vitamin D inactivation in patients with CYP24A1 mutations. J Clin Endocrinol Metab 2017; 102(5): 1440-6. doi: 10.1210/jc.2016-4048 PMID: 28324001
  102. Bertholet-Thomas A, Tram N, Dubourg L, Lemoine S, Molin A, Bacchetta J. Fluconazole as a new therapeutic tool to manage patients with NPTIIc (SLC34A3) mutation: A case report. Am J Kidney Dis 2019; 73(6): 886-9. doi: 10.1053/j.ajkd.2018.12.026 PMID: 30765103
  103. Thiele S, Werner R, Stubbe A, Hiort O, Hoeppner W. Validation of a next-generation sequencing (NGS) panel to improve the diagnosis of X-linked hypophosphataemia (XLH) and other genetic disorders of renal phosphate wasting. Eur J Endocrinol 2020; 183(5): 497-504. doi: 10.1530/EJE-20-0275 PMID: 33107440
  104. Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet 2012; 57(7): 453-8. doi: 10.1038/jhg.2012.56 PMID: 22695891

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers