Manifestations of Fouling of Heterogeneous Membranes by Wine Components in the Process of their Tartrate Stabilization by Electrodialysis Method

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Tartrate stabilization of wine components by electrodialysis makes it possible to speed up and automate this process, as well as reduce the loss of valuable components. The widespread introduction of electrodialysis into industrial wine production is hampered due to fouling of ion-exchange membranes with wine components, as well as due to the very limited range of membranes currently used. This study is devoted to a comparative analysis of the properties of relatively inexpensive heterogeneous ion exchange membranes MA-41, MK-40 and AMH-PES, CMH-PES before and after their use in the tartrate stabilization of wine materials by electrodialysis. It has been shown that the mechanisms of fouling and its impact on transport characteristics, as well as on the development of electroconvection and the generation of H+, OH ions are largely determined by the counterions that are transferred through cation-exchange (transition metal cations) and anion-exchange (carboxylic acid anions) membranes. Membranes MA-41, MK-40 demonstrate higher resistance to fouling during operation in electrodialysis units for less than 15 hours.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Pasechnaya

Kuban State University

Email: n_pismen@mail.ru
Ресей, Krasnodar, 149, Stavropolskaya St., 350040

M. Ponomar

Kuban State University

Email: n_pismen@mail.ru
Ресей, Krasnodar, 149, Stavropolskaya St., 350040

A. Klevtsova

Kuban State University

Email: n_pismen@mail.ru
Ресей, Krasnodar, 149, Stavropolskaya St., 350040

K. Kirichenko

Kuban State University

Email: n_pismen@mail.ru
Ресей, Krasnodar, 149, Stavropolskaya St., 350040

K. Solonchenko

Kuban State University

Email: n_pismen@mail.ru
Ресей, Krasnodar, 149, Stavropolskaya St., 350040

N. Pismenskaya

Kuban State University

Хат алмасуға жауапты Автор.
Email: n_pismen@mail.ru
Ресей, Krasnodar, 149, Stavropolskaya St., 350040

Әдебиет тізімі

  1. World Wine Production Outlook // OIV. 2023. 9 pp.
  2. de Castro M., Baptista J., Matos C., Valente A., Briga-Sá A. // Sci. Total Environ. 2024. V. 930. P. 172383.
  3. El Rayess Y., Castro-Muñoz R., Cassano A. // Trends Food Sci. Technol. 2024. V.147. P. 104453.
  4. Cui W., Wang X., Han S., Guo W., Meng N., Li J., Sun B., Zhang X. // Food Chemistry: X. 2024. V. 23. P. 101728
  5. Granes D., Bouissou D., Lutin F., Moutounet M., Rousseau J. // Bulletin de l’OIV. 2009. V. 82. № 935. P. 57.
  6. Payan C., Gancel A.-L., Jourdes M., Christmann M., Teissedre P.-L. // OENO One. – 2023. V. 57. № 3. P. 113–126.
  7. Escudier J., Saint-Pierre B., Batlle J., Moutounet M. Automatic Method and Device for Tartaric Stabilization of Wines, WO9506110. 1995.
  8. El Rayess Y., Mietton-Peuchot M. // Crit. Rev. Food Sci. Nutr. 2016. V. 56. № 12. P. 2005–2020.
  9. Vecino X., Reig M., Gibert O., Valderrama C., Cortina J.L. // ACS Sustain. Chem. Eng. 2020. V. 8. № 35. P. 13387–13399.
  10. Chen M.V. An electrolytic method for tartrate stabilization in Chardonnay winе. 2016. Master’s Theses. California Polytechnic State University, San Luis Obispo. P. 1–74.
  11. Gnilomedova N., Anikina N., Vesyutova A., Oleinikova V., Gavrish V., Chayka T. // Food Processing: Techniques and Technology. 2022. V. 52. № 3. P. 490–499.
  12. Benı́tez J.G., Macı́as V.P., Gorostiaga P.S., López R.V., Rodrı́guez L.P. // J. Food. Eng. 2003. V. 58. № 4. P. 373–378.
  13. Pismenskaya N., Bdiri M., Sarapulova V., Kozmai A., Fouilloux J., Baklouti L., Larchet C., Renard E., Dammak L. // Membranes. 2021. V. 11. № 11. P. 811.
  14. Jackson R.S. Wine Science: Principles and Applications, Academic Press: UK. 2020.
  15. Bdiri M., Perreault V., Mikhaylin S., Larchet C., Hellal F., Bazinet L., Dammak L. // Sep. Purif. Technol. 2020. V. 233. P. 115995.
  16. Fabjanowicz M., Płotka-Wasylka J. // Trends Food Sci. Technol. 2021. V. 112. P. 382–390.
  17. Zhang X., Kontoudakis N., Wilkes E., Scrimgeour N., Hirlam K., Clark A.C. // Food Chem. 2021. V. 357. P. 129764.
  18. Ran J., Wu L., He Y., Yang Z., Wang Y., Jiang C., Ge L., Bakangura E., Xu T. // J. Memb. Sci. 2017. V. 522. P. 267–291.
  19. Akberova E.M., Vasil’eva V.I., Zabolotsky V.I., Novak L. // J. Memb. Sci. 2018. V. 566. P. 317–328.
  20. Vasil’eva V.I., Zhiltsova A.V., Akberova E.M., Fataeva A.I. // Condensed Matter and Interphases. 2014. V. 16. № 3. P. 257–261.
  21. Berezina N.P., Kononenko N.A., Dyomina O.A., Gnusin N.P. // Adv. Colloid Interface Sci. 2008. V. 139. № 1-2. P. 3–28.
  22. Tsygurina K., Pasechnaya E., Chuprynina D., Melkonyan K., Rusinova T., Nikonenko V., Pismenskaya N. // Membranes. 2022. V. 12. №. 12. P. 1187.
  23. Pasechnaya E.L., Klevtsova A.V., Korshunova A.V., Chuprynina D.A., Pismenskaya N.D. // Membr. Membr. Technol. 2024. V. 6. № 4. P. 273–289.
  24. Ponomar M., Krasnyuk E., Butylskii D., Nikonenko V., Wang Y., Jiang C., Xu T., Pismenskaya N. // Membranes. 2022. V. 12. № 8. P. 765.
  25. Lteif R., Dammak L., Larchet C., Auclair B. // Eur. Polym. J. 1999. V. 35. № 7. P. 1187–1195.
  26. Belashova E.D., Melnik N.A., Pismenskaya N.D., Shevtsova K.A., Nebavsky A.V., Lebedev K.A., Nikonenko V.V. // Electrochimica Acta. 2012. V. 59. P. 412–423.
  27. Kolbas N.Y. // Scientific notes of the Brest State University named after A. S. Pushkin. 2014. V. 10. P. 30–38.
  28. Пасечная Е.Л., Пономарь М.А., Клевцова А.В., Коршунова А.В., Сарапулова В.В., Письменская Н.Д. // Мембраны и мембранные технологии. 2024. Т. 14. № 4. с. 317–332.
  29. Mollaamin F., Mohammadian N.T., Najaflou N., Monajjemi M. // SN Appl. Sci. 2021. V. 3. P. 1–18.
  30. Helfferich F.G., Dranoff J.S. Ion Exchange, McGraw-Hill: New Yor, 1963.
  31. Pasechnaya E., Tsygurina K., Ponomar M., Chuprynina D., Nikonenko V., Pismenskaya N. // Membranes. 2023. V. 13. P. 84.
  32. Perreault V., Sarapulova V., Tsygurina K., Pismenskaya N., Bazinet L. // Membranes. 2021. V. 11. P. 136.
  33. Bellamy L.J. The Infra-Red Spectra of Complex Molecules, 3rd ed. Springer: Dordrecht, The Netherlands, 1975.
  34. Tarasevich B.N. Infrared Spectrum of Basic Classes of Organic Compounds. Moscow, 2012.
  35. Coates J. Interpretation of Infrared Spectra. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd: Chichester, UK, 2006.
  36. Ghalloussi R., Garcia-Vasquez W., Chaabane L., Dammak L., Larchet C., Deabate S.V., Nevakshenova E., Nikonenko V., Grande D. // J. Membr. Sci. 2013. V. 436. P. 68.
  37. Simoes Costa A.M., Costa Sobral M.M., Delgadillo I., Cerdeira A., Rudnitskaya A. // Sensor. Actuat. B-Chemical. 2015. V. 207. P. 1095.
  38. Garcia-Vasquez W., Ghalloussi R., Dammak L., Larchet C., Nikonenko V., Grande D. // J. Memb. Sci. 2014. V. 452. P. 104–116.
  39. Scano P. // LWT. 2021. V. 147. P. 111604.
  40. Newman J.S. Electrochemical Systems. John Wiley & Sons Inc.: Hoboken, New Jersey, 2004.
  41. Nikonenko V., Nebavsky A., Mareev S., Kovalenko A., Urtenov M., Pourcelly G. // Applied Sciences. 2018. V. 9. № 1. P. 25.
  42. Rubinstein I., Zaltzman B. // Phys. Rev. Lett. 2015. V. 114. № 11. P. 114502.
  43. Zabolotsky V.I., Novak L., Kovalenko A.V., Nikonenko V.V., Urtenov M.H., Lebedev K.A., But A Yu. // Petroleum Chemistry. 2017. V. 57. P. 779–789.
  44. Zabolotsky V.I., Vasil’eva V.I., Lebedev K.A., Akberova E.M., Achoh A.R., Davydov D.V., Loza S.A., Dobryden S.V. // Chem. Eng. Sci. 2024. V.295. P. 120137.
  45. Rubinstein I., Zaltzman B. // Adv. Colloid. Interface Sci. 2007. V. 134. P. 190–200.
  46. Pärnamäe R., Mareev S., Nikonenko V., Melnikov S., Sheldeshov N., Zabolotskii V., Hamelers H.V.M. // J. Memb. Sci. 2021. V. 617. P. 118538.
  47. Sarapulova V., Nevakshenova E., Nebavskaya X., Kozmai A., Aleshkina D., Pourcelly G., Nikonenko V., Pismenskaya N. // J. Memb. Sci. 2018. V. 559. P. 170–182.
  48. Dressick W.J., Wahl K.J., Bassim N.D., Stroud R.M., Petrovykh D.Y. // Langmuir. – 2012. V. 28. № 45. P. 15831–15843.
  49. Pismenskaya N., Rybalkina O., Solonchenko K., Butylskii D., Nikonenko V. // Membranes. 2023. V. 13. № 7. P. 647.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Optical images of the surfaces of the CMH-PES cation exchange membrane (a, c) and AMH-PES anion exchange membrane (b, d) after their operation in the electrodialysis process of tartrate stabilisation of model wine material in the NEP (a, b) and PEP (c, d) modes. The numbers (1) and (2) denote the surface areas that were not in contact and those that were in contact with the wine material. The light green box limits the polarisable region of the membranes. The inserts in the centre of each figure correspond to enlarged portions of the images.

Жүктеу (525KB)
3. Fig. 2. Effect of pH on colour changes of optical images of surfaces (1, 2) and slices (3-8) of CMH-PES cation exchange membrane (a) and AMH-PES anion exchange membrane (b) after PEP operation.

Жүктеу (1MB)
4. Fig. 3. IR spectra of the wine material (a) as well as AMH-PES (b) and MA-41 (c) membranes before and after electrodialysis under NEP and PEP current regimes.

Жүктеу (353KB)
5. Fig. 4. Specific electrical conductivity of cation-exchange (a) and anion-exchange (b) membranes before and after their operation in the electrodialysis process under NEP and PEP current regimes. The studies were carried out in 0.5 M NaCl solution.

Жүктеу (276KB)
6. Fig. 5. Voltampere characteristics of cation-exchange membrane CMH-PES (a) and anion-exchange membrane AMH-PES before and after electrodialysis in NEP and PEP modes (b), as well as pH difference at the outlet and inlet of desalting chambers (c, d) formed by the investigated and auxiliary membranes MA-41 (a, c) or MK-40 (b, d), respectively. The studies were carried out in 0.02 M NaCl solution. The values of the theoretical limiting current ilimLev are indicated by the dotted line.

Жүктеу (485KB)
7. Fig. 6. Voltampere characteristics of cation exchange membrane MK-40 (a) and anion exchange membrane MA-41 (b) before and after electrodialysis in NEP and PEP modes, as well as pH differences at the outlet and inlet of desalting chambers (c, d) formed by the investigated and auxiliary membranes MA-41 (a, c) or MK-40 (b, d), respectively. The studies were carried out in 0.02 M NaCl solution. The values of the theoretical limiting current ilimLev are indicated by the dotted line.

Жүктеу (420KB)
8. Fig. 7. Ratios of the values of experimental limiting currents found from WACs for cation-exchange (a) and anion-exchange (b) membranes operated in electrodialysis processes and initial cation-exchange (a) and anion-exchange (b) membranes.

Жүктеу (592KB)
9. Fig. 8. pH difference at the outlet of desalting chambers formed by cation-exchange (a) and anion-exchange (b) membranes used in electrodialysis or original. Data are presented for i/ilimLev = 2.5.

Жүктеу (456KB)

© Russian Academy of Sciences, 2024