Swelling and Degradation in Aqueous Solutions of Hydrogels Based on Chitosan and Pectin and on Their Modifications

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The swelling and degradation of physical and chemical hydrogels based on chitosan and pectin and their modifications have been compared. Physical hydrogels were obtained by mixing aqueous solutions of chitosan hydrochloride and pectin in the form of a polyelectrolyte complex. Chemical hydrogels were synthesized via the interaction of N-succinyl chitosan and oxidized pectin in solution, wherein crosslinks were made in the form of a Schiff base. It has been shown that the physical hydrogels are relatively stable in acidic and neutral media, while the chemical hydrogels swell in some cases indefinitely in these media. Both types of hydrogels undergo rapid degradation in an alkaline medium.

Sobre autores

R. Vil’danova

Ufa Institute of Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: regina777@list.ru
450054, Ufa, Bashkortostan, Russia

Bibliografia

  1. Valuev I.L., Vanchugova L.V., Gorshkova M.Y., Sivov N.A., Valuev L.I. // Polymer Science B. 2021. V. 63. № 4. P. 404.
  2. Kovylin R.S., Fedushkin I.L., Aleynik D.Y. // Polymer Science C. 2021. V. 63. № 1. P. 29.
  3. Sultanova E.M., Oripova M.Z., Oshchepkova Y.I., Salikhov S.I. // Pharmaceut. Chem. J. 2020. V. 54. № 5. P. 514.
  4. Ahmed E.M. // J. Advanced Res. 2015. V. 6. № 2. P. 105.
  5. Guo Y., Bae J., Fang Z., Li P., Zhao F., Yu G. // Chem. Rev. 2020. V. 120. № 15. P. 7642.
  6. Patel P., Thareja P. // Eur. Polym. J. 2022. V. 163. P. 110935.
  7. Mahmood A., Patel D., Hickson B., DesRochers J., Hu X. // Int. J. Mol. Sci. 2022. V. 23. № 3. P. 1415.
  8. Ebhodaghe S.O. // Int. J. Polym. Mater. Polym. Biomater. 2022. V. 71. № 3. P. 155.
  9. Sheth S., Barnard E., Hyatt B., Rathinam M., Zustiak S.P. // Front. Bioeng. Biotechnol. 2019. V. 7. P. 410.
  10. Bordbar-Khiabani A., Gasik M. // Int. J. Mol. Sci. 2022. V. 23. № 7. P. 3665.
  11. Vigata M., Meinert C., Hutmacher D.W., Bock N. // Pharmaceutics. V. 12. № 12. P. 1188.
  12. Pertici V., Pin-Barre C., Rivera C., Pellegrino C., Laurin J., Gigmes D., Trimaille T. // Biomacromolecules. 2019. V. 20. № 1. P. 149.
  13. Немцев С.В., Быкова В.М., Ежова Е.А., Лопатин С.А. // Матер. VIII Международ. конф. “Современные перспективы в исследовании хитина и хитозана”. М.: Всеросс. науч.-иссл. ин-т рыбного хозяйства и океанографии, 2006. С. 109.
  14. Gurina M.S., Vil’danova R.R., Badykova L.A., Vlasova N.M., Kolesov S.V. // Russ. J. Appl. Chem. 2017. V. 90. № 2. P. 219.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (403KB)
3.

Baixar (306KB)
4.

Baixar (110KB)
5.

Baixar (223KB)
6.

Baixar (99KB)

Declaração de direitos autorais © Р.Р. Вильданова, 2023