Plants of various monocot families differ in nitrogen and phosphorus content in leaves

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The content of N and P in the leaves of the following five families of monocots was studied: Poaceae, Cyperaceae, Orchidaceae, Iridaceae, Amaryllidaceae. It was found that species of different families of monocots had different N and P content and ratio in their leaves. N content was low in Iridaceae and high in Amaryllidaceae. P content was the lowest in Cyperaceae and Poaceae and the highest in Amaryllidaceae and Iridaceae. The minimum N/P ratio was in Iridaceae, the maximum in Poaceae. Thus, the content of N and P and their ratio is specific in different families of monocots.

Texto integral

Acesso é fechado

Sobre autores

А. Betekhtina

Ural Federal University

Autor responsável pela correspondência
Email: A.A.Betekhtina@urfu.ru
Rússia, Ekaterinburg

N. Reutova

Ural Federal University

Email: A.A.Betekhtina@urfu.ru
Rússia, Ekaterinburg

D. Veselkin

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences

Email: A.A.Betekhtina@urfu.ru
Rússia, Ekaterinburg

Bibliografia

  1. Elser J.J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems // Ecology letters. 2007. Т. 10. №. 12. С. 1135–1142.
  2. Bui E.N., Henderson B.L. C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors // Plant and soil. 2013. Т. 373. С. 553–568.
  3. Awasthi P., Laxmi A. Root Architectural Plasticity in Changing Nutrient Availability // Rhizobiology: Molecular Physiology of Plant Roots. 2021. С. 25–37.
  4. He M. et al. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability // Scientific Reports. 2014. Т. 4. №. 1. С. 6932. 1.
  5. Зубкова Е.В., Стаменов М.Н., Припутина И.В., Грабовский В.И. Использование методов фитоиндикации для оценки связи содержания азота в растениях с условиями их произрастания (на примере лесов Южного Подмосквья) // Ботанический журнал. 2023. Т. 108. №10. С. 896–913.
  6. Güsewell S.N. P ratios in terrestrial plants: variation and functional significance // New phytologist. – 2004. Т. 164. №. 2. С. 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x
  7. Бетехтина А.А. и др. За 50 лет зарастания отвала золы содержание азота и фосфора изменилось в эмбриоземе, но не изменилось в растениях // Экология. 2023. №. 4. С. 281–290.
  8. Онипченко В.Г. и др. Химический состав листьев растений как функциональный признак формирования альпийских растительных сообществ // Экология. 2023. №. 6. С. 407–415.
  9. Chapin F.S. et al. Plant responses to multiple environmental factors // Bioscience. 1987. Т. 37. №1. С. 49–57.
  10. Konoplenko M.A., Güsewell S., Veselkin D.V. Taxonomic and ecological patterns in root traits of Carex (Cyperaceae) // Plant and Soil. 2017. Т. 420. С. 37–48.
  11. Lambers H. Phosphorus acquisition and utilization in plants // Annual Review of Plant Biology. 2022. Т. 73. С. 17–42.
  12. van Der Heijden M.G.A. et al. Mycorrhizal ecology and evolution: the past, the present, and the future // New phytologist. 2015. Т. 205. №4. С. 1406–1423.
  13. Betekhtina A.A., Tukova D.E., Veselkin D.V. Root structure syndromes of four families of monocots in the Middle Urals // Plant Diversity. 2023.
  14. Minasiewicz J. et al. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids // BMC Plant Biology. 2023. Т. 23. №. 1. С. 422.
  15. Wang Z. et al. Divergent nitrogen and phosphorus allocation strategies in terrestrial plant leaves and fine roots: A global meta-analysis // Journal of Ecology. 2022. Т. 110. №. 11. С. 2745–2758.
  16. Postma J.A., Lynch J.P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium // Plant physiology. 2011. Т. 156. №3. С. 1190–1201.
  17. Gahoonia T.S., Nielsen N.E. Barley genotypes with long root hairs sustain high grain yields in low-P field // Plant and Soil. 2004. Т. 262. С. 55–62.
  18. Roumet C. et al. Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy // New Phytologist. 2016. Т. 210. №3. С. 815–826.
  19. Yang X. et al. How arbuscular mycorrhizal fungi drives herbaceous plants’ C: N: P stoichiometry? A meta-analysis // Science of The Total Environment. 2023. Т. 862. С. 160807.
  20. Макаров М.И. Роль микоризы в трансформации соединений азота в почве и в азотном питании растений (обзор) // Почвоведение. 2019. №2. С. 220–233.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution of monocotyledonous family species (● – Amaryllidaceae; ● – Cyperaceae; ● – Iridaceae; ● – Orchidacea; ● – Poaceae) in the space defined by the content of N and P in the leaves. A single red arrow marks the point characterizing the N and P content in Avena sativa leaves on cultivated soil without additional fertilization. The range of N and P content in the leaves of this species when grown on additionally fertilized soil is shown by horizontal and vertical scales. A double red arrow marks the point characterizing the content of N and P in the leaves of Miscanthus sacchariflorus.

Baixar (98KB)

Nota

Presented by Academician of the RAS V.N. Bolshakov


Declaração de direitos autorais © Russian Academy of Sciences, 2024