Binary proton therapy of Ehrlich carcinoma using targeted gold nanoparticles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Proton therapy can treat tumors located in radiation-sensitive tissues. This article demonstrates the possibility of enhancing the proton therapy with targeted gold nanoparticles that selectively recognize tumor cells. Au-PEG nanoparticles at concentrations above 25 mg/L and 4 Gy proton dose caused complete death of EMT6/P cells in vitro. Binary proton therapy using targeted Au-PEG-FA nanoparticles caused an 80% tumor growth inhibition effect in vivo. The use of targeted gold nanoparticles is promising for enhancing the proton irradiation effect on tumor cells and requires further research to increase the therapeutic index of the approach.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Filimonova

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre, Obninsk Institute for Nuclear Power Engineering

Ресей, Obninsk; Obninsk

D. Kolmanovich

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: d.petrunya@lebedev.ru
Ресей, Pushchino; Moscow

G. Tikhonowski

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: d.petrunya@lebedev.ru
Ресей, Moscow

D. Petrunya

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Хат алмасуға жауапты Автор.
Email: d.petrunya@lebedev.ru
Ресей, Moscow; Moscow

P. Kotelnikova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: d.petrunya@lebedev.ru
Ресей, Moscow

A. Shitova

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

O. Soldatova

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

A. Filimonov

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

V. Rybachuk

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

A. Kosachenko

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

K. Nikolaev

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

G. Demyashkin

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre

Ресей, Obninsk

A. Popov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: d.petrunya@lebedev.ru
Ресей, Moscow

M. Savinov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: d.petrunya@lebedev.ru
Ресей, Moscow

A. Popov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: d.petrunya@lebedev.ru
Ресей, Pushchino; Moscow

I. Zelepukin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: d.petrunya@lebedev.ru
Ресей, Moscow

A. Lipengolts

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru
Ресей, Moscow; Moscow

K. Shpakova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Institution N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation

Email: d.petrunya@lebedev.ru
Ресей, Moscow; Moscow

A. Kabashin

Aix-Marseille University

Email: d.petrunya@lebedev.ru
Франция, Marseille

S. Koryakin

National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: d.petrunya@lebedev.ru

A. Tsyb Medical Radiological Research Centre, Obninsk Institute for Nuclear Power Engineering

Ресей, Obninsk; Obninsk

S. Deyev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: d.petrunya@lebedev.ru

Academician of the RAS

Ресей, Moscow

I. Zavestovskaya

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: d.petrunya@lebedev.ru
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Durante M., Loeffler J.S. Charged Particles in Radiation Oncology // Nat. Rev. Clin. Oncol. 2010. V. 7(1). P. 37–43. https://doi.org/10.1038/nrclinonc.2009.183
  2. Lo C.Y., Tsai S.W., Niu H., et al. Gold-nanoparticles-enhanced Production of Reactive Oxygen Species in Cells at Spread-out Bragg Peak under Proton Beam Radiation // ACS Omega. 2023. V. 8(20). P. 17922–17931.
  3. Martínez‐Rovira I., Prezado Y. Evaluation of the Local Dose Enhancement in the Combination of Proton Therapy and Nanoparticles // Med. Phys. 2015. V. 42(11). P. 6703–6710.
  4. Zwiehoff S., Johny J., Behrends C., et al. Enhancement of Proton Therapy Efficiency by Noble Metal Nanoparticles is Driven by the Number and Chemical Activity of Surface Atoms // Small. 2022. V. 18(9). P. e2106383.
  5. Zavestovskaya I.N., Popov A.L., Kolmanovich D.D., et al. Boron Nanoparticle-enhanced Proton Therapy for Cancer Treatment // Nanomaterials (Basel). 2023. V. 13(15). P. 2167.
  6. Gerken L.R.H., Gogos A., Starsich F.H.L., et al. Catalytic Activity Imperative for Nanoparticle Dose Enhancement in Photon and Proton Therapy // Nat. Commun. 2022. V. 13(1). 3248.
  7. Zelepukin I.V., Griaznova O.Yu., Shevchenko K.G., et al. Flash Drug Release from Nanoparticles Accumulated in the Targeted Blood Vessels facilitates the Tumour Treatment // Nat. Commun. 2022. V. 13(1). 6910.
  8. Tolmachev V.M., Chernov V.I., Deyev S.M. Targeted Nuclear Medicine. Seek and Destroy // Russ. Chem. Rev. 2022. V. 91(3). RCR5034.
  9. Li S., Bouchy S., Penninckx S., Marega R., et al. Antibody-functionalized Gold Nanoparticles as Tumor Targeting Radiosensitizers for Proton Therapy // Nanomedicine. 2019. V. 14(3). P. 317–333.
  10. Kang S.H., Hong S.P., Kang B.S. Targeting Chemo-proton Therapy on C6 Cell Line Using Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folate and Paclitaxel // International Journal of Radiation Biology. 2018. V. 94(11). P. 1006–1016.
  11. Siwowska K., Haller S., Bortoli F., et al. Preclinical Comparison of Albumin-binding Radiofolates: Impact of Linker Entities on the in Vitro and in Vivo Properties // Mol. Pharm. 2017. V. 14(2). P. 523–532.
  12. Popov A.A., Swiatkowska-Warkocka Z., Marszalek M., et al. Laser-ablative Synthesis of Ultrapure Magneto-plasmonic Core-satellite Nanocomposites for Biomedical Applications // Nanomaterials (Basel). 2022. V. 12(4). 649.
  13. Gao J., Huang X., Liu H., Zan F., Ren J. Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging // Langmuir. 2012. V. 28(9). P. 4464–4471.
  14. R S., M Joseph M., Sen A., K R.P., Bs U., Tt S. Galactomannan Armed Superparamagnetic Iron Oxide Nanoparticles as a Folate Receptor Targeted Multi-functional Theranostic Agent in the Management of Cancer // Int. J. Biol. Macromol. 2022. V. 219. P. 740–753.
  15. Baibarac M., Smaranda I., Nila A., Serbschi C. Optical Properties of Folic Acid in Phosphate Buffer Solutions: The Influence of pH and UV Irradiation on the UV–VIS Absorption Spectra and Photoluminescence // Sci. Rep. 2019. V. 9(1). 14278.
  16. Filimonova M., Shitova A., Soldatova O., et al. Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects // Int. J. Mol. Sci. 2022. V. 23. 730.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Transmission electron microscopy image of Au nanoparticles.

Жүктеу (318KB)
3. Fig. 2. Clonogenic analysis of EMT6/P adenocarcinoma cells after proton beam irradiation in the presence of Au-PEG nanoparticles. * – p < 0.05, ** – p < 0.001, Student’s t-test.

Жүктеу (255KB)
4. Fig. 3. Growth inhibition index (GI) values ​​of Ehrlich carcinoma after proton irradiation at a dose of 31 Gy in the presence and absence of Au-PEG-FA nanoparticles. * – p < 0.05, Kruskal–Wallis test.

Жүктеу (112KB)

© Russian Academy of Sciences, 2024