Precise satellite geodetic measurements and geodynamic research in Northern Eurasia: state and prospects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper addresses the issues of geodynamic research in Northern Eurasia over the past three decades with emphasis on the use of space technologies in geodesy and geodynamics. The main focus is on the GNSS system as the most widespread and effective tool for geodynamic research due to the compactness and relative ease of installation of ground-based tracking equipment, as well as the possibility of its autonomous operation. The importance of precise GNSS positioning for monitoring small-scale geodynamic displacements of the earth’s surface, which requires millimeter-scale measurement accuracy, is emphasized. The issues of development of a precise reference frame for geodynamics and maintaining its long-term consistency based on the International Terrestrial Reference Frame (ITRF) are considered, as well as the problems and prospects of precise satellite geodetic measurements and geodynamic research in the context of the current reduction in interaction with international geodetic data centers. To solve the problems that have arisen, ways are proposed based on the arranging a subcontinental-scale system for equalization of raw GNSS measurements. The capabilities of the used GNSS network for solving problems of geodesy and geodynamics are demonstrated by the example of the analysis of the tectonic rigidity of cratons of Northern Eurasia and the impact of motion of adjacent tectonic plates and variations of these motion in the past geological eras on the contemporary geodynamic setting of these cratons.

作者简介

G. Steblov

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: steblov@mitp.ru
俄罗斯联邦, Moscow; Moscow

P. Shebalin

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: steblov@mitp.ru

Corresponding Member of the RAS

俄罗斯联邦, Moscow

G. Melnik

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Public law company “Roskadastr”

Email: steblov@mitp.ru
俄罗斯联邦, Moscow; Moscow; Moscow

参考

  1. Международный стандарт ISO 19161-1:2020 “Geographic information. Geodetic references. Part 1: International terrestrial reference system (ITRS)”.
  2. Argus D. F., Gordon R. G., DeMets C. Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame // Geochemistry, Geophysics, Geosystems. 2011. V. 12. № 11.
  3. Herring T. A., Melbourne T. I., Murray M. H., Floyd M. A., Szeliga W. M., King R. W., Phillips D. A., Puskas C. M., Santillan M., Wang L. Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products // Reviews of Geophysics. 2016. V. 54. No 4. P. 759–808.
  4. Мельник Г. Э., Стеблов Г. М. Стабильность Северной Евразии по данным спутниковой геодезии // Физика Земли. 2024. № 2. С. 3–15.
  5. Чуваев А. В., Баранов А. А., Бобров А. М. Численное моделирование конвекции в мантии Земли с использованием облачных технологий // Вычислительные технологии. 2020. Т. 25. № 2. С. 103–117.
  6. Баранов А. А., Лобковский Л. И., Бобров А. М. Глобальная геодинамическая модель современной Земли и ее приложение для Антарктиды // Доклады РАН. Науки о Земле. 2023. Т. 512. № 1. С. 100–105.
  7. Национальный атлас России. Том 2. Природа и экология. 2007. Геологическое строение и ресурсы недр. Мощность земной коры. Масштаб 1:30 000 000. Отв. ред. Г.Ф. Кравченко, редкол. А.В. Бородко (пред.) и др. / ПКО «Картография» под общ. рук. М-ва транспорта Российской Федерации и Роскартографии. 2007. С. 63.
  8. Кулаков И. Ю., Гайна К., Добрецов Н. Л., Василевский А. Н., Бушенкова Н. А. Реконструкции перемещений плит в Арктическом регионе на основе комплексного анализа гравитационных, магнитных и сейсмических аномалий // Геология и геофизика. 2013. Т. 54. № 8. С. 1108–1125.
  9. Глебовский В. Ю., Каминский В. Д., Минаков А. Н., Меркурьев С. А., Чилдерс В. А., Брозина Д. М. История формирования Евразийского бассейна Северного Ледовитого океана по результатам геоисторического анализа аномального магнитного поля // Геотектоника. 2006. № 4. С. 21–42.
  10. Кононов М. В., Лобковский Л. И. Влияние верхнемантийной конвективной ячейки и связанной с ней субдукции Тихоокеанской плиты на тектонику Арктики в позднем Мелу-Кайнозое // Геотектоника. 2019. № 6. С. 27–45.
  11. Kogan M.G., Steblov G.M. Current global plate kinematics from GPS (1995-2007) with the plate-consistent reference frame // Journal of Geophysical Research: Solid Earth. 2008. V. 113. № 4. P. B04416(1‒17).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024