Late Paleozoic stages of ore formation in the Middle Tien Shan: isotopic U-Pb zircon dating (LA-ICP-MS method) of intrusive rocks from the Sonkul and Kokturpak plutons (eastern Kyrgyzstan)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents the isotopic U-Pb study data (LA-ICP-MS method) of zircon from intrusive rocks of the Sonkul and Kokturpak plutons situated along the deep-seated fault system of the “Nikolaev Line” in the eastern Kyrgyzstan. These plutons of high-potassic rocks are spatially and genetically associated with the Kumbel and Kashkasu W-Mo-Cu-Au deposits, respectively, as well as other occurrences of W and W-Au mineralization. Together with other Au, W and Cu deposits, they are parts of the extended metallogenic belt of Tien Shan. The concordant isotopic U-Pb ages of zircon autocrysts for the consecutive intrusive phases span over the interval of approximately 303 to 283 Ma. This interval included the crystallization of olivine gabbro (299±2 Ma) in the Sonkul pluton, monzonite (300±3 Ma) in the Kokturpak pluton, granodiorite of the main intrusive phase (299±3 Ma in the Sonkul pluton and 297±4 Ma in the Kokturpak pluton), and monzogranite (289±4 Ma in the Sonkul pluton and 285±2 Ma in the Kokturpak pluton). Zircon antecrysts dated at 306–311 (to 323?) Ma have also been distinguished. The age data obtained correspond to the pluton emplacement in the Late Carboniferous-Early Permian initially in subduction-related and then post-collisional tectonic settings. Besides, in the Middle Tien Shan, this age interval corresponds to one of the regional pulses of high-potassic calc-alkaline and shoshonitic magmatism. A distinct metallogenic evolution corresponds to these pulses that is expressed in the change from porphyry Cu-Au-Mo deposits related to the early pulse to essentially tungsten (W-Mo-Cu-Au) and then essentially gold deposits related to younger pulses. The rocks also contain zircon xenocrysts with ancient age (in the order of 1.5–2.5 Ga) that probably represent the age of the Tarim craton basement.

Texto integral

Acesso é fechado

Sobre autores

S. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: serguei07@mail.ru
Rússia, Moscow

S. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Rússia, Moscow

D. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Rússia, Novosibirsk

Y. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Rússia, Novosibirsk

N. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru

Academician of the RAS

Rússia, Moscow

Bibliografia

  1. Kudrin V. S., Soloviev S. G., Stavinsky V. A., Kabardin L. L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Goldfarb R., Nielsen R. (Eds.), Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  4. Soloviev S. G. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stockwork deposit, Tien-Shan, Kyrgyzstan // Mineralium Deposita. 2015. V. 50. P. 187–220.
  5. Soloviev S. G., Kryazhev S. G. Geology, mineralization, and fluid inclusion characteristics of the Kashkasu W-Mo-Cu skarn deposit associated with a high-potassic to shoshonitic igneous suite in Kyrgyzstan, Tien Shan: toward a diversity of W mineralization in Central Asia // Journal of Asian Earth Sciences. 2018. V. 153. P. 425–449.
  6. Алексеев Д. В., Дегтярев К. Е., Котов А. Б., Сальникова Е. В., Третьяков А. А., Яковлева С. З., Анисимова И. В., Шатагин К. Н. Позднепалеозойские субдукционные и коллизионные магматические комплексы в Нарынском сегменте Срединного Тянь-Шаня (Киргизстан) // Доклады РАН. Науки о Земле. 2009. Т. 427. № 2. С. 219–223.
  7. De Grave J., Glorie S., Buslov M.M., Izmer A., Fournier-Carrie A., Batalev V. Yu., Vanhaecke F., Elburg M., Van den Haute P. The thermo-tectonic history of the Song-Kul plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermochronometry and zircon U/Pb dating // Gondwana Research. 2011. V. 20. P. 745–763.
  8. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S. Y. GLITTER: Data reduction software for laser ablation ICP-MS. / Sylvester P. (ed.). Miner. Assoc. of Canada (Short Course Series) 2008. V. 40. P. 307–311.
  9. Hiess J., Condon D.J., McLean N., Noble S. R. U 238 / U 235 systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  10. Slama J., Kosler J., Condon D. J. et al. Plesovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  11. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center, 2003. P. 1–70
  12. Black L. P., Kamo S. L., Allen C. M. et al. Improved P 206 b/ U 238 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  13. Miller J. S., Matzel J. E., Miller C. F., Burgess S. D., Miller R. B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  14. Биске Ю. С. Палеозойская структура и история Южного Тянь-Шаня. СПб.: Изд-во СПГУ, 1996. 192 с.
  15. Konopelko D., Biske G., Seltmann R., Eklund O., Belyatsky B. Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan // Lithos. 2007. V. 97. P. 140–160.
  16. Cheng Z., Zhang Z., Chai F., Hou T., Santosh M., Turesebekov A., Nurtaev B. S. Carboniferous porphyry Cu-Au deposits in the Almalyk orefield, Uzbekistan: the Sarycheku and Kalmakyr examples // International Geology Review. 2017. V. 60. P. 1–20.
  17. Zhao X.-B., Xue C.-J., Chi G.-X., Mo X.-X., Nurtaev B., Zhang G.-Z. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu–Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes // Ore Geol. Rev. 2017. V. 86. P. 807–824.
  18. Соловьев С. Г., Кряжев С. Г., Семенова Д. В., Калинин Ю. А., Бортников Н. С. Изотопный U-Pb возраст циркона (метод LA-ICP-MS) из магматических пород W-Мо(-Cu-Au) месторождения Чорух-Дайрон (Таджикистан): первые свидетельства постколлизионного рудообразования в Кураминском сегменте Срединного Тянь-Шаня // Доклады РАН. Науки о Земле. 2024. Т. 516. № 1. С. 57–68.
  19. Kröner A., Alexeiev D. V., Kovach V. P., Rojas-Agramonte Ya., Tretyakov A. A., Mikolaichuk A. V., Xie H. Q., Sobel E. R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu Complex, East Kyrgyzstan – the oldest continental basement fragment in the Tianshan orogenic belt // Journal of Asian Earth Sciences. 2017. V. 135. P. 122–135.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the late Paleozoic metallogenic belt of Tien Shan. 1 - faults of different orders, 2 - late Paleozoic active continental margin (Middle Tien Shan), 3 - continental blocks of the basement of the Tarim and Karakum cratons, 4 - accretionary wedge terranes thrust onto the passive continental margin with possible cratonic basement, 5 - major (a) and minor (b) gold deposits, 6 - gold-copper-molybdenum-tungsten deposits, 7 - molybdenum-tungsten deposits, 8 - polymetal-tungsten deposits, 9 - tin-tungsten deposits, 10 - tin deposits, 11 - major (a) and minor (b) copper-molybdenum and molybdenum-gold-copper porphyry deposits, 12 - state borders.

Baixar (414KB)
3. Fig. 2. Geological schemes (A) of Eastern Kyrgyzstan, showing the position of the “V.A. Nikolaev line” and the structure of adjacent territories, (B) the area of ​​the Sonkul and Kokturpak plutons, and (C) the eastern flank of the Sonkul pluton, with the position of the Kumbel deposit and its cross-section (according to data from [5, 6). A: 1 – Cenozoic deposits, 2 – Late Devonian-Early Carboniferous suture troughs (Sonkul, Turuk), 3 – terranes of the Southern Tien Shan, 4 – terranes of the Middle Tien Shan, 5 – terranes of the Northern Tien Shan, 6 – Paleoproterozoic (up to Archean?) gneisses, amphibolites, migmatites (blocks of the base of the Tarim Craton, separated by rift systems), 7 – Late Carboniferous-Early Permian intrusions of the shoshonite and high-potassium calc-alkaline series, 8 – individual Late Carboniferous-Permian granitoid intrusions of the Southern Tien Shan, 9 – faults, 10–12 – deposits and ore occurrences (10 – gold, 11 – tungsten, 12 – molybdenum). B: 1 – Neogene-Quaternary conglomerates, sandstones, siltstones, sands, gypsums, 2–5 – Late Carboniferous-Early Permian intrusive rocks of the Sonkul and Kokturpak plutons (2 – monzogranites, 3 – granodiorites, 4 – monzonites to quartz monzonites of the Ichkesu stock, 5 – olivine gabbros, monzodiorites and monzonites), 6 – faults, 7–9 – deposits and ore occurrences (7 – tungsten, 8 – gold, 9 – magnetite), 10 – sampling locations for isotope dating of zircons. B: 1–4 – Late Carboniferous-Early Permian intrusive rocks of the Sonkul pluton and Ichkesu stock (1 – monzogranites, 3 – granodiorites, 4 – monzonites to quartz monzonites of the Ichkesu stock, 5 – monzodiorites to monzonites), 5–7 – Lower Carboniferous sedimentary rocks (5 – siltstones (a), calcareous sandstones and conglomerates (b), 6 – sandy dolomitic limestones, 7 – thin-banded beds of alternating siltstones and sandstones, with partial skarnification), 8 – faults, 9 – skarns, 10 – zones of sericite-carbonate-quartz metasomatites with rod-shaped quartz veins).

Baixar (572KB)
4. Fig. 3. Cathodoluminescence images of zircon crystals (circles indicate points where isotopic dating was carried out, point numbers correspond to those in Table 2) and concordia diagrams for zircons from intrusive rocks of the Sonkul pluton (thin solid ellipses are the results of single analyses, the dotted ellipse corresponds to the concordant value; errors of single analyses and calculated concordant ages are given at the 2σ level).

Baixar (868KB)
5. Fig. 4. Cathodoluminescence images of zircon crystals (circles indicate points where isotopic dating was carried out, point numbers correspond to those in Table 2) and concordia diagrams for zircons from intrusive rocks of the Kokturpak pluton (thin solid ellipses are the results of single analyses, the dotted ellipse corresponds to the concordant value; errors of single analyses and calculated concordant ages are given at the 2σ level).

Baixar (844KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024