Picritic dolerite dikes of the Naryn River: age, composition and position in the geological history of the Southeastern Tuva (Central Asian Orogenic Belt)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

New evidence of the Early Silurian sublithospheric magmatic activity in the eastern part of the Altai-Sayan orogen has been obtained, which occurred between large-scale mantle magmatic episodes of the Middle–Late Ordovician and Devonian. These are the dikes of high-Mg (MgO 15–22 wt %) picritic dolerite of the Naryn complex in the western part of the Tuva-Mongolian superterrane. The dike complex consists of simple picritic dolerite dikes and combined dikes which compose a central picritic dolerite and granitoids along contacts with mingling zone between them. The picritic dolerite geochemical signature is similar to the enriched basalt of mid-ocean ridges or within-plate regions and indicates sublithospheric mantle source of therm. The origin of initial picritic dolerite melts occurred at depth about 120–140 km, temperature of 1600–1640°C and melting degree up to 20% of a dry peridotite. These values are consistent with the origin conditions of the hot spot magmas. The granitoids from combined dikes had crustal geochemical signature and were formed due to anatexis of the Tuva-Mongolian superterrane host rocks initiated by the picritic dolerite intrusion. The U–Pb zircon age (SHRIMP-II) of leucogranite from the combined dyke is 439±3 Ma witch interpreted as age of the Naryn dyke complex. Early Silurian mantle magmatic activity of the Southeastern Tuva most likely caused the migration of the Siberian paleocontinent over the African mantle hot field.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Yarmolyuk

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences; Tuvinian Institute for Exploration of Natural Resources of Siberian Branch of the Russian Academy of Sciences

Email: amk@igem.ru

Academician of the RAS

Ресей, Moscow; Kyzyl

A. Kozlovsky

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: amk@igem.ru
Ресей, Moscow

U. Moroz

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: amk@igem.ru
Ресей, Moscow

A. Nikiforov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: amk@igem.ru
Ресей, Moscow

Әдебиет тізімі

  1. Abbott D. H., Isley A. E. The intensity, occurrence, and duration of superplume events and eras over geological time // J. Geodyn. 2002. V. 34. P. 265–307.
  2. Соболев А. В., Соболев С. В., Кузьмин Д. В., Малич К. Н., Петрунин А. Г. Механизм образования сибирских меймечитов и природа их связи с траппами и кимберлитами // Геология и геофизика. 2009. Т. 50(12). С. 1293–1334.
  3. Добрецов Н. Л., Борисенко А. С., Изох А. Э. Термохимические глубинные мантийные плюмы – источник рудного богатства планеты // Наука из первых рук. 2020. № 5–6 (90). С. 54–61.
  4. Yarmolyuk V. V., Kuzmin M. I., Ernst R. E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt // J. Asian Earth Sci. 2014. V. 93. P. 158–179.
  5. Vorontsov A., Yarmolyuk V., Dril S., Ernst R., Perfilova O., Grinev O., Komaritsyna T. Magmatism of the Devonian Altai-Sayan Rift System: Geological and geochemical evidence for diverse plume-lithosphere interactions // Gondw. Res. 2021. V. 89. P. 193–219.
  6. Ярмолюк В. В., Козловский А. М., Никифоров А. В., Кудряшова Е. А., Хертек А. К. Возраст и состав Дугдинского массива щелочных пород (Восточный Саян): к оценке закономерностей проявления позднепалеозойского редкометального магматизма в юго-западном обрамлении Сибирской платформы // Доклады РАН. Науки о Земле. 2021. T. 499. № 1. C. 33–41.
  7. Козаков И. К., Ковач В. П., Ярмолюк В. В., Котов А. Б., Сальникова Е. Б., Загорная Н. Ю. Корообразующие процессы в геологическом развитии Тувино-Монгольского массива: Sm-Nd изотопные и геохимические данные по гранитоидам // Петрология. 2003. Т. 11. № 5. C. 491–511.
  8. Владимиров А. Г., Изох А. Э., Поляков Г. В., Бабин Г. А., Мехоношин А. С., Крук Н. Н., Хлестов В. В., Хромых С. В., Травин А.В., Юдин Д. С., Шелепаев Р. А., Кармышева И. В., Михеев Е. И. Габбро-гранитные интрузивные серии и их индикаторное значение для геодинамических реконструкций // Петрология. 2013. Т. 21. № 2. C. 177–201.
  9. Шарпенок Л. Н., Костин А. Е., Кухаренко Е. А. TAS-диаграмма сумма щелочей–кремнезем для химической классификации и диагностики плутонических пород // Региональная геология и металлогения. 2013. № 56. C. 40–50.
  10. Wood D. A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province // Earth Planet. Sci. Let. 1980 V. 50. P. 11–30.
  11. Изох А. Э, Вишневский А. В., Поляков Г. В., Шелепаев Р. А. Возрастные рубежи пикритового и пикродолеритового магматизма Западной Монголии // Геология и геофизика. 2011. T. 52. № 1. C. 10–31.
  12. Sun S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes / Eds. A. D. Saunders, M. J. Norry. Magmatism in the Ocean Basins. London: Geol. Soc. (Special Publ.), 1989. 42. P. 313–345.
  13. Rudnick R. L., Gao S. Composition of the continental crust / Ed. R. L. Rudnick. The Crust. Treatise on Geochemistry. Oxford, 2003. V. 3. P. 1–64.
  14. Larionov A. N., Andreichev V. A., Gee D. G. The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite // The Neoproterozoic Timanide Orogen of Eastern Baltica. Еds. Gee D. G., Pease V. L. London: Geological Society (Memoirs), 2004. V. 30. P. 69–74.
  15. Lee C. T. A., Luffi P., Plank T., Dalton H., Leeman W. P. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas // Earth Planet. Sci. Let. 2009. V. 279(1–2). P. 20–33.
  16. Руднев С. Н. Раннепалеозойский гранитоидный магматизм Алтае-Саянской складчатой области и озерной зоны Западной Монголии. Новосибирск: Издательство Сибирского отделения Российской академии наук, 2013. 295 с.
  17. Гибшер A. A., Мальковец В. Г., Травин A. B., Белоусова Е. А., Шарыгин В. В., Konc Z. Возраст камптонитовых даек агардагского щелочнобазальтоидного комплекса Западного Сангилена на основании Ar/Ar и U/Pb датирования // Геология и геофизика. 2012. № 8. C. 998–1013.
  18. Владимиров В. Г., Кармышева И. В., Яковлев В. А., Травин А. В., Цыганков А. А., Бурмакина Г. Н. Термохронология минглинг-даек Западного Сангилена (Юго-Восточная Тува): свидетельства развала коллизионной системы на северо-западной окраине Тувино-Монгольского массива // Геодинамика и тектонофизика. 2017. Т. 8. № 2. C. 283–310.
  19. Kuzmin M. I., Yarmolyuk V. V., Kravchinsky V. A. Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province // Earth-Science Reviews. 2010. V. 102. P. 29–59.
  20. Torsvik T. H., Cocks L. R. M. Earth History and Palaeogeography. Cambridge: Cambridge University Press, 2017. Р. 332.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the structure of the distribution area of ​​the Naryn complex dikes (a) and the position of this complex in the geological structures of southeastern Tuva (b) according to [8] with simplifications. Legend for Fig. (a): 1 - Cenozoic formations, 2 - metamorphic complexes of the Chartys series (PR2); 3 - nepheline syenites (C3?), 4 - gabbroids (O2?), 5 - granite-gneisses of the Erzin complex; 6-8 - dikes of the Naryn complex: 6 - basic composition, 7 - combined, 8 - not detailed by composition; 9 - faults. Legend for Fig. (b): 10 - complexes of the Tannu-Ola island arc, 11-13 - metamorphic complexes of the Tuva-Mongolian superterrane: 11 - Mugur, 12 - Lower Erzin, 13 - Erzin; 14 - carbonate-terrigenous cover; 15-17 - igneous complexes: 15 - Bayankol gabbro-granosyenite-granite, 16 - Bashkymugur gabbro-monzodiorite, 17 - Bashkymugur granite-leucogranite; 18 - Agardag suture suture, 19 - boundaries of tectonic nappes, 20 - regions of development of dike complexes (I - Naryn, II - Agardak). Inset: TMS – Tuva-Mongolian superterrane, DS – Dzabkhan superterrane.

Жүктеу (920KB)
3. Fig. 2. Relationships between picrodolerite and granitoid components of combined dikes of the Naryn complex. A – general view of dikes; B – mingling textures: rounded nodules of picrodolerite (dark), “cemented” by leucogranite material (light).

Жүктеу (597KB)
4. Fig. 3. Geochemical characteristics of the rocks of the Naryn dike complex. 1 – simple picrodolerite dikes, 2 – basic component of combined dikes, 3 – granitoid component of combined dikes, 4 – composition field of the Agardak complex lamprophyre dikes according to ([11] and unpublished data of A.E. Izokh). Fields in diagram (a) according to [9], in diagram (b) according to [10]: A – normal mid-ocean ridge basalts (N-MORB), B – enriched mid-ocean ridge basalts (E-MORB) and intraplate basalts, C – alkaline intraplate basalts, D – volcanic arc basalts.

Жүктеу (206KB)
5. Fig. 4. Microelement distribution spectra in rocks of the Naryn dike complex. 1–2 – picrodolerites: 1 – simple dikes, 2 – combined dikes, 3 – lamprophyres of the Agardak complex according to [11], 4–6 – leucogranites of combined dikes, samples: 4 – ChZh-3/15, 5 – ChZh-2/10, 6 – ChZh-5/14, 7 – composition field of picrodolerite dikes. Compositions: N-MORB, E-MORB, chondrite and primitive mantle according to [12], upper continental crust according to [13].

Жүктеу (508KB)
6. Fig. 5. Micrographs of zircon crystals taken on a Camscan MX 2500S scanning electron microscope in cathodoluminescence mode (circles indicate dating areas) (a), and a concordia diagram (b) for leucogranite of the combined dyke of the Naryn complex (sample CHZh-5/14). The point numbers correspond to the serial numbers in Table 2.

Жүктеу (254KB)
7. Fig. 6. Estimate of the temperature and pressure of magma generation in simple picrodolerite dikes of the Naryn complex according to [15]. F is the degree of melting of mantle peridotites in dry conditions. The field of melt generation conditions of the Hawaiian hot spot is shown.

Жүктеу (308KB)

© Russian Academy of Sciences, 2024