О генерации частотных гребенок на основе механических колебаний низкоразмерных наносистем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуется нелинейная динамика прямоугольной атомарно-тонкой нанополосы в условиях внутреннего комбинационного резонанса между двумя поперечными и одной продольной формами механических колебаний. Аналитически найдены условия на величину деформации начального натяжения слоя, требуемую для реализации резонанса между формами с заданными индексами изменяемости по длине. Показано, что в условиях внутреннего резонанса в системе возбуждается нелинейный режим свободных колебаний, спектр которого имеет вид частотной гребенки. Выделены два качественно различных типа колебаний такого рода, вызванных начальным возбуждением по рабочей продольной форме колебаний и двум поперечным формам. Показана существенная зависимость спектрального состава генерируемых частотных гребенок от соотношений между амплитудами начального возмущения по трем взаимодействующим модальным координатам и величины параметра внутренней частотной расстройки системы.

Полный текст

Доступ закрыт

Об авторах

А. В. Лукин

Санкт-Петербургский политехнический университет

Автор, ответственный за переписку.
Email: lukin_av@spbstu.ru
Россия, Санкт-Петербург

И. А. Попов

Санкт-Петербургский политехнический университет

Email: lukin_av@spbstu.ru
Россия, Санкт-Петербург

О. В. Привалова

Санкт-Петербургский политехнический университет

Email: lukin_av@spbstu.ru
Россия, Санкт-Петербург

Л. В. Штукин

Санкт-Петербургский политехнический университет

Email: lukin_av@spbstu.ru
Россия, Санкт-Петербург

Список литературы

  1. Xiao X., Li C., Fan S.-C., Liu Y.-J., Liu Y. Optical-thermally actuated graphene mechanical resonator for humidity sensing. Sensors and Actuators B.: Chemical, 2023. 374, 132851. https://doi.org/10.1016/j.snb.2022.132851
  2. Roslon I., Steeneken P.G., Alijani F., Roslon I.E., Japaridze A., Naarden L., Smeets L., Dekker C., van Belkum A., Alijani F. Prospects and Challenges for Graphene Drums as Sensors of Individual Bacteria. 2023. https://doi.org/10.1101/2023.11.20.567863
  3. Xu B., Zhang P., Zhu J., Liu Z., Eichler A., Zheng X.Q., Lee J., Dash A., More S., Wu S., Wang Y., Jia H., Naik A., Bachtold A., Yang R., Feng P. X. L., Wang Z. Nanomechanical Resonators: Toward Atomic Scale // ACS Nano. 2022. V. 16, Iss. 10. P. 15545–15585. American Chemical Society. https://doi.org/10.1021/acsnano.2c01673
  4. Sajadi B., van Hemert S., Arash B., Belardinelli P., Steeneken P.G., Alijani F. Size- and temperature-dependent bending rigidity of graphene using modal analysis // Carbon. 2018. V. 139. P. 334–341. https://doi.org/10.1016/j.carbon.2018.06.066
  5. Ferrari P.F., Kim S.P., van der Zande A.M. Nanoelectromechanical systems from two-dimensional materials // Appl. Physics Reviews. 2023. V. 10. Iss. 3. American Institute of Physics Inc. https://doi.org/10.1063/5.0106731
  6. Steeneken P.G., Dolleman R.J., Davidovikj D., Alijani F., van der Zant H.S.J. Dynamics of 2D material membranes // 2D Materials. 2021. V. 8. Iss. 4. IOP Publishing Ltd. https://doi.org/10.1088/2053-1583/ac152c
  7. Cupertino A., Shin D., Guo L., Steeneken P.G., Bessa M.A., Norte R.A. Centimeter-scale nanomechanical resonators with low dissipation. 2023. http://arxiv.org/abs/2308.00611
  8. Dolleman R.J., Houri S., Chandrashekar A., Alijani F., van der Zant H.S.J., Steeneken P.G. Opto-thermally excited multimode parametric resonance in graphene membranes // Scientific Reports, 2018. 8(1). https://doi.org/10.1038/s41598-018-27561-4
  9. Yang F., Rochau F., Huber J.S., Brieussel A., Rastelli G., Weig E.M., Scheer E. Spatial Modulation of Nonlinear Flexural Vibrations of Membrane Resonators // Physical Review Letters. 2019. V. 122(15). https://doi.org/10.1103/PhysRevLett.122.154301
  10. Zega V., Nitzan S., Li M., Ahn C.H., Ng E., Hong V., Yang Y., Kenny T., Corigliano A., Horsley D.A. Predicting the closed-loop stability and oscillation amplitude of nonlinear parametrically amplified oscillators // Appl. Physics Letters. 2015. V. 106(23). https://doi.org/10.1063/1.4922533
  11. Keşkekler A., Shoshani O., Lee M., van der Zant H.S.J., Steeneken P.G., Alijani F. Tuning nonlinear damping in graphene nanoresonators by parametric–direct internal resonance // Nature Communications. 2021. V. 12(1). https://doi.org/10.1038/s41467-021-21334-w
  12. Lee J., Shaw S.W., Feng P.X.L. Giant parametric amplification and spectral narrowing in atomically thin MoS2 nanomechanical resonators // Appl. Physics Reviews. 2022. V. 9(1). https://doi.org/10.1063/5.0045106
  13. Liu C.H., Kim I.S., Lauhon L.J. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime // Nano Letters. 2015. V. 15(10). P. 6727–6731. https://doi.org/10.1021/acs.nanolett.5b02586
  14. Keskekler A., Bos V., Aragón A.M., Steeneken P.G., Alijani F. Characterizing multi-mode nonlinear dynamics of nanomechanical resonators. 2023. http://arxiv.org/abs/2304.01419
  15. Wang M., Perez-Morelo D.J., Lopez D., Aksyuk V.A. Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators // Physical Review X. 2022. V. 12(4). https://doi.org/10.1103/PhysRevX.12.041025
  16. de Jong M.H.J., Cupertino A., Shin D., Gröblacher S., Alijani F., Steeneken P.G., Norte R.A. Beating Ringdowns of Near-Degenerate Mechanical Resonances // Physical Review Applied. 2023. V. 20(2), 024053. https://doi.org/10.1103/PhysRevApplied.20.024053
  17. Wei X., Zhang T., Jiang Z., Ren J., Huan R. Frequency latching in nonlinear micromechanical resonators // Appl. Physics Letters. 2017. 110(14). https://doi.org/10.1063/1.4979829
  18. Gajo K., Rastelli G., Weig E.M. Tuning the nonlinear dispersive coupling of nanomechanical string resonators // Phys. Review B, 2020. V. 101(7). https://doi.org/10.1103/PhysRevB.101.075420
  19. Ganesan A., Do C., Seshia A. Phononic Frequency Comb via Intrinsic Three-Wave Mixing. Physical Review Letters, (2017). 118(3). https://doi.org/10.1103/PhysRevLett.118.033903
  20. Udem T., Holzwarth R., Hansch T.W. Optical frequency metrology // Nature. 2002. 416(6877). https://doi.org/10.1038/416233a. PMID: 11894107
  21. Kolachevsky N.N., Khabarova K.Yu., Zalivako I.V., Semerikov I.A., Borisenko A.S., Sherstov I.V., Bagaev S.N., Lugovoy A.A., Prudnikov О.N., Taichenachev A.V., Chepurov S.V. Prospective Quantum-Optical Technologies for Satellite Navigation Challenges // Rocket-Space Device Engineering and Information Systems. 2018. V. 5(1). P. 13–27. https://doi.org/10.30894/issn2409-0239.2018.5.1.13.27
  22. Mantsevich S.N., Kostyleva E.I., Danilin A.N., Khorkin V.S. Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser // Frontiers of Optoelectronics. 2023. 16(1). https://doi.org/10.1007/s12200-023-00079-y
  23. Lee J., Shaw S.W., Feng P.X.L. Phononic Frequency Comb Generation via 1:1 Mode Coupling in MoS2 2D Nanoelectromechanical Resonators // Proc. IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2022. January. P. 503–506. https://doi.org/10.1109/MEMS51670.2022.9699651
  24. Sun J., Yu S., Zhang H., Chen D., Zhou X., Zhao C., Gerrard D.D., Kwon R., Vukasin G., Xiao D., Kenny T.W., Wu X., Seshia A. Generation and Evolution of Phononic Frequency Combs via Coherent Energy Transfer between Mechanical Modes // Phys. Review Applied. 2023. 19(1). https://doi.org/10.1103/PhysRevApplied.19.014031
  25. Ganesan A., Seshia A. Resonance tracking in a micromechanical device using phononic frequency combs // Scientific Reports. 2019. 9(1). https://doi.org/10.1038/s41598-019-46003-3
  26. Zhang T., Seshia A.AA MEMS Frequency Comb Energy Harvester // J. Microelectromechanical Systems. 2023. https://doi.org/10.1109/JMEMS.2023.3316436
  27. Morozov N.F., Indeitsev D.A., Lukin A.V., Popov I.A., Shtukin L.V. Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS // J. Sound and Vibration. 2021. 509. https://doi.org/10.1016/j.jsv.2021.116247

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Модель предварительно натянутого нанослоя.

Скачать (68KB)
3. Рис. 2. Натяжение слоя, необходимое для реализации внутреннего комбинационного резонанса.

Скачать (278KB)
4. Рис. 3. Режим пульсаций при начальном возбуждении по продольной форме колебаний.

Скачать (339KB)
5. Рис. 4. Спектрограмма колебаний при изменении натяжения слоя.

Скачать (713KB)

Примечание

Представлено академиком РАН Н.Ф. Морозовым 20.01.2024 г.


© Российская академия наук, 2024