Synthesis of 4-amino-1,3-diarylimidazolium chlorides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The first representatives of 4-amino-1,3-diarylimidazolium chlorides have been synthesized by heating chloroacetonitrile with N,Nʹ-diarylformamidines containing alkyl substituents at positions 2 and 6 of the N-aryl groups. The possibility of postfunctionalization of the obtained aminoimidazolium salts by acylation of the amino group was demonstrated, as well as their applicability as precursors of N-heterocyclic carbenes in the synthesis of Cu/NHC complexes after preliminary protection of the amino group.

Texto integral

Acesso é fechado

Sobre autores

M. Shevchenko

Platov South-Russian State Polytechnic University (NPI)

Email: chern13@yandex.ru
Rússia, 346428, Novocherkassk

D. Pasyukov

Platov South-Russian State Polytechnic University (NPI)

Email: chern13@yandex.ru
Rússia, 346428, Novocherkassk

I. Lavrentiev

Platov South-Russian State Polytechnic University (NPI)

Email: chern13@yandex.ru
Rússia, 346428, Novocherkassk

M. Minyaev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: chern13@yandex.ru
Rússia, 119991, Moscow

V. Chernyshev

Platov South-Russian State Polytechnic University (NPI)

Autor responsável pela correspondência
Email: chern13@yandex.ru
Rússia, 346428, Novocherkassk

Bibliografia

  1. Herrmann W.A. // Angew. Chem., Int. Ed. 2002. V. 41. № 8. P. 1290–1309. https://doi.org/10.1002/1521-3773(20020415) 41:8<1290::AID-ANIE1290>3.0.CO;2-Y
  2. Díez-González S., Marion N., Nolan S.P. // Chem. Rev. 2009. V. 109. № 8. P. 3612–3676. https://doi.org/10.1021/cr900074m
  3. Bellotti P., Koy M., Hopkinson M.N., Glorius F. // Nat. Rev. Chem. 2021. V. 5. № 10. P. 711–725. https://doi.org/10.1038/s41570-021-00321-1
  4. Nahra F., Nelson D.J., Nolan S.P. // Trends Chem. 2020. V. 2. № 12. P. 1096–1113. https://doi.org/10.1016/j.trechm.2020.10.003
  5. Chernyshev V.M., Denisova E.A., Eremin D.B., Ananikov V.P. // Chem. Sci. 2020. V. 11. № 27. P. 6957–6977. https://doi.org/10.1039/D0SC02629H
  6. Benhamou L., Chardon E., Lavigne G., Bellemin-Laponnaz S., César V. // Chem. Rev. 2011. V. 111. № 4. P. 2705–2733. https://doi.org/10.1021/cr100328e
  7. Hopkinson M.N., Richter C., Schedler M., Glorius F. // Nature. 2014. V. 510. № 7506. P. 485–496. https://doi.org/10.1038/nature13384
  8. Scattolin T., Nolan S.P. Trends Chem. 2020. V. 2. № 8. P. 721–736. https://doi.org/10.1016/j.trechm.2020.06.001
  9. Peris E. // Chem. Rev. 2018. V. 118. № 19. P. 9988–10031. https://doi.org/10.1021/acs.chemrev.6b00695
  10. Pasyukov D.V., Shevchenko M.A., Shepelenko K.E., Khazipov O.V., Burykina J.V., Gordeev E.G., Minyaev M.E., Chernyshev V.M., Ananikov V.P. // Angew. Chem., Int. Ed. 2022. V. 61. № 9. P. e202116131. https://doi.org/10.1002/anie.202116131
  11. Pasyukov D.V., Shevchenko M.A., Astakhov A.V., Minyaev M.E., Zhang Y., Chernyshev V.M., Ananikov V.P. // Dalton Trans. 2023. V. 52. № 34. P. 12067–12086. https://doi.org/10.1039/D3DT02296J
  12. Zhang Y., César V., Storch G., Lugan N., Lavigne G. // Angew. Chem., Int. Ed. 2014. V. 53. № 25. P. 6482–6486. https://doi.org/10.1002/anie.201402301
  13. Zhang Y., César V., Lavigne G. // Eur. J. Org. Chem. 2015. V. 2015. № 9. P. 2042–2050. https://doi.org/10.1002/ejoc.201500030
  14. Zhang Y., Lavigne G., Lugan N., César V. // Chem. Eur. J. 2017. V. 23. № 55. P. 13792–13801. https://doi.org/10.1002/chem.201702859
  15. Chesnokov V.V., Shevchenko M.A., Soliev S.B., Tafeenko V.A., Chernyshev V.M. // Russ. Chem. Bull. 2021. V. 70. № 7. P. 1281–1289. https://doi.org/10.1007/s11172-021-3212-5
  16. Danopoulos A.A., Braunstein P. // Chem. Commun. 2014. V. 50. № 23. P. 3055–3057. https://doi.org/10.1039/C3CC49517E
  17. Huber S.M., Heinemann F.W., Audebert P., Weiss R. // Chem. Eur. J. 2011. V. 17. № 46. P. 13078–13086. https://doi.org/10.1002/chem.201101999
  18. Gómez-Suárez A., Nelson D.J., Nolan S.P. // Chem. Commun. 2017. V. 53. № 18. P. 2650–2660. https://doi.org/10.1039/C7CC00255F
  19. Nasr A., Winkler A., Tamm M. // Coord. Chem. Rev. 2016. V. 316. P. 68–124. https://doi.org/10.1016/j.ccr.2016.02.011
  20. Danopoulos A.A., Monakhov K.Yu., Braunstein P. // Chem. Eur. J. 2013. V. 19. № 2. P. 450–455. https://doi.org/10.1002/chem.201203488
  21. Chernenko A.Yu., Astakhov A.V., Kutyrev V.V., Gordeev E.G., Burykina J.V., Minyaev M.E., Khrustalev V.N., Chernyshev V.M., Ananikov V.P. // Inorg. Chem. Front. 2021. V. 8. № 13. P. 3382–3401. https://doi.org/10.1039/D1QI00453K
  22. Chernenko A.Yu., Baydikova V.A., Minyaev M.E., Chernyshev V.M. // Russ. Chem. Bull. 2024. V. 73. № 4. P. 932–949. https://doi.org/10.1007/s11172-024-4206-x
  23. Pyatachenko A.S., Chernenko A.Yu., Soliev S.B., Minyaev M.E., Chernyshev V.M. // Mendeleev Commun. 2024. V. 34. № 1. P. 39–42. https://doi.org/10.1016/j.mencom.2024.01.012
  24. Chernenko A.Yu., Baydikova V.A., Kutyrev V.V., Astakhov A.V., Minyaev M.E., Chernyshev V.M., Ananikov V.P. // ChemCatChem. 2024. V. 16. P. e202301471. https://doi.org/10.1002/cctc.202301471
  25. Pasyukov D.V., Chernenko A.Yu., Shepelenko K.E., Kutyrev V.V., Khrustalev V.N., Chernyshev V.M. // Mendeleev Commun. 2021. V. 31. № 2. P. 176–178. https://doi.org/10.1016/j.mencom.2021.03.010
  26. César V., Tourneux J.-C., Vujkovic N., Brousses R., Lugan N., Lavigne G. // Chem. Commun. 2012. V. 48. № 17. P. 2349. https://doi.org/10.1039/c2cc17870b
  27. Mackenzie G., Wilson H.A., Shaw G., Ewing D.J. // Chem. Soc. Perkin Trans. 1. 1988. № 9. P. 2541–2546. https://doi.org/10.1039/P19880002541
  28. Ewing D.F., Mackenzie G., Rouse S.P.N., Scrowston R.M. // Nucleosides and Nucleotides. 1995. V. 14. № 3–5. P. 367–368. https://doi.org/10.1080/15257779508012384
  29. Groziak M.P., Huan Z.-W., Ding H., Meng Z., Stevens W.C., Robinson P.D. // J. Med. Chem. 1997. V. 40. № 21. P. 3336–3345. https://doi.org/10.1021/jm970301s
  30. Chattopadhyay G., Ray P.S. // Indian J. Chem. Sec. B. 2013. V. 52B. P. 546–552.
  31. Masuda J. // Acta Cryst. 2008. V. E64. № 8. P. o1447. https://doi.org/10.1107/S160053680802076X
  32. Cole M.L., Junk P.C. // J. Organomet. Chem. 2003. V. 666. № 1. P. 55–62. https://doi.org/10.1016/S0022-328X(02)02033-8
  33. Anulewicz R., Wawer I., Krygowski T.M., Männle F., Limbach H.-H.J. // Am. Chem. Soc. 1997. V. 119. № 50. P. 12223–12230. https://doi.org/10.1021/ja970699h
  34. Chun J., Lee H.S., Jung I.G., Lee S.W., Kim H.J., Son S.U. // Organometallics. 2010. V. 29. № 7. P. 1518–1521. https://doi.org/10.1021/om900768w
  35. Egbert J.D., Cazin C.S J., Nolan S.P. // Catal. Sci. Technol. 2013. V. 3. № 4. P. 912–926. http://dx.doi.org/10.1039/C2CY20816D
  36. Beig N., Goyal V., Bansal R.K. // Beilstein J. Org. Chem. 2023. V. 19. P. 1408–1442. https://doi.org/10.3762/bjoc.19.102
  37. Nayak S., Gaonkar S.L. // ChemMedChem. 2021. V. 16. № 9. P. 1360–1390. https://doi.org/10.1002/cmdc. 202000836
  38. Nahra F., Gómez-Herrera A., Cazin C.S.J. // Dalton Trans. 2017. V. 46. № 3. P. 628–631. https://doi.org/10.1039/C6DT03687B
  39. Mikhaylov V.N., Balova I.A. // Russ. J. Gen. Chem. 2021. V. 91. № 11. P. 2194–2248. https://doi.org/10.1134/S1070363221110098
  40. Mikhaylov V.N., Kazakov I.V., Parfeniuk T.N., Khoroshilova O.V., Scheer M., Timoshkin A.Y., Balova I.A. // Dalton Trans. 2021. V. 50. № 8. P. 2872–2879. https://doi.org/10.1039/D1DT00235J
  41. Kaur H., Zinn F.K., Stevens E.D., Nolan S.P. // Organometallics. 2004. V. 23. № 5. P. 1157–1160. https://doi.org/10.1021/om034285a
  42. Mankad N.P., Gray T.G., Laitar D.S., Sadighi J.P. // Organometallics. 2004. V. 23. № 6. P. 1191–1193. https://doi.org/10.1021/om034368r
  43. McLean A.P., Neuhardt E.A., John J.P.St., Findlater M., Abernethy C.D. // Transition Met. Chem. 2010. V. 35. № 4. P. 415–418. https://doi.org/10.1007/s11243-010-9343-4
  44. Díez-González S., Escudero-Adán E.C., Benet-Buchholz J., Stevens E.D., Slawin A.M.Z., Nolan S.P. // Dalton Trans. 2010. V. 39. № 32. P. 7595–7606. https://doi.org/10.1039/C0DT00218F
  45. Hirano K., Urban S., Wang C., Glorius F. // Org. Lett., 2009. V. 11. № 4. P. 1019–1022. https://doi.org/10.1021/ol8029609
  46. Konstandaras N., Dunn M.H., Luis E.T., Cole M.L., Harper J.B. // Org. Biomol. Chem. 2020. V. 18. № 10. P. 1910–1917. https://doi.org/10.1039/D0OB00036A
  47. Zhukhovitskiy A.V., Mavros M.G., Van Voorhis T., Johnson J.A. // J. Am. Chem. Soc. 2013. V. 135. № 20. P. 7418–7421. https://doi.org/10.1021/ja401965d
  48. Dar B.A., Ahmad S.N., Wagay M.A., Hussain A., Ahmad N., Bhat K.A., Khuroo M.A., Sharma M., Singh B. // Tetrahedron Lett. 2013. V. 54. № 36. P. 4880–4884. https://doi.org/10.1016/j.tetlet.2013.06.131
  49. Mazloumi M., Shirini F., Goli-Jolodar O., Seddighi M. // New J. Chem. 2018. V. 42. № 8. P. 5742–5752. https://doi.org/10.1039/C8NJ00171E
  50. Bruker and APEX-III // Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
  51. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3–10. https://doi.org/10.1107/S1600576714022985
  52. Sheldrick G.M. // Acta Cryst. 2015. V. A71. № 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
  53. Sheldrick G.M. // Acta Cryst. 2015. V. C71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
  54. Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. // J. Appl. Cryst. 2020. V. 53. № 1. P. 226–235. https://doi.org/10.1107/S1600576719014092

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Synthesis of compounds 2a–e and the main reaction products of compound 1f with chloroacetonitrile.

Baixar (261KB)
3. Scheme 2. Synthesis of compounds 6a–c and 7a–c.

Baixar (166KB)
4. Fig. 1. The molecular structure of complex 7a. One of the two nonequivalent molecules of the complex is shown. Hydrogen atoms are not shown. Vibrations of nonhydrogen atoms are shown in an anisotropic approximation (p = 50%).

Baixar (220KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024