Effect of surface microstructure for corrosion resistance and magnetic properties of an amorphous cobalt-based Co-Si-Fe-Cr-Al ALLOY
- Authors: Kuznetsova I.I.1, Lebedeva O.K.1, Kultin D.Y.1, Perov N.S.1, Kustov L.M.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Issue: Vol 514, No 1 (2024)
- Pages: 50-58
- Section: CHEMISTRY
- URL: https://permmedjournal.ru/2686-9535/article/view/651920
- DOI: https://doi.org/10.31857/S2686953524010052
- ID: 651920
Cite item
Abstract
The surface of an amorphous cobalt-based alloy of nominal composition Co75Si15Fe5Cr4.5Al0.5 was modified by nanostructures at anodizing in an ionic liquid – bis(trifluoromethane sulfonyl)imide 1-butyl-3-methyl- imidazolium. The magnetic (saturation specific magnetization and coercive force) and corrosion (corrosion potential and resistance) characteristics of an amorphous alloy before and after electrochemical modification of the surface by nanostructures are compared. Modification of the alloy surface partially changes its magnetic properties. After corrosion tests, an increase in the value of coercive force is observed. Corrosion tests were carried out by the method of polarization curves in Ringer’s solution. The corrosion resistance of alloys modified by oxide nanostructures is higher than the corrosion resistance of a polished alloy. The increase in corrosion resistance is mainly determined by the presence of nanostructures.
Full Text

About the authors
I. I. Kuznetsova
Lomonosov Moscow State University
Author for correspondence.
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991 MoscowO. K. Lebedeva
Lomonosov Moscow State University
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991 MoscowD. Yu. Kultin
Lomonosov Moscow State University
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991 MoscowN. S. Perov
Lomonosov Moscow State University
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991 MoscowL. M. Kustov
Lomonosov Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: lmkustov@mail.ru
Department of Chemistry
Russian Federation, 119991 Moscow; 119991 MoscowReferences
- Chiriac H., Herea D.-D., Corodeanu S. // J. Magn. Magn. Mater. 2007. V. 311. № 1. P. 425–428. https://doi .org/10.1016/j.jmmm.2006.11.207
- Louzguine-Luzgin D.V., Ketov S.V., Trifonov A.S., Churymov A.Yu. // J. Alloys Compd. 2018. V. 742. P. 512–517. https://doi .org/10.1016/j.jallcom.2018.01.290
- Ackland K., Masood A., Kulkarni S., Stamenov P. // AIP Advances. 2018. V. 8. № 5. P. 056129. https://doi .org/10.1063/1.5007707
- Xu D.D., Zhou B.L., Wang Q.Q., Zhou J., Yang W.M., Yuan C.C., Xue L., Fan X.D., Ma L.Q., Shen B.L. // Corros. Sci. 2018. V. 138. P. 20–27. https://doi .org/10.1016/j.corsci.2018.04.006
- Xu J., Yang Y., Li W., Xie Z., Chen X. // Mater. Res. Bull. 2018. V. 97. P. 452–456. https://doi .org/10.1016/j.materresbull.2017.09.042
- Permyakova I.E., Glezer A.M., Savchenko E.S., Shchetinin I.V. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. № 11. P. 1310–1316. https://doi .org/10.3103/S1062873817110144
- Han J., Hong J., Kwon S., Choi-Yim H. // Metals. 2021. V. 11. № 2. P. 304. https://doi .org/10.3390/met11020304
- Lone S.A., Mardare C.C., Mardare A.I., Hassel A.W. // Meet. Abstr. 2021. V. MA2021-01. № 18. P. 797. https://doi .org/10.1149/MA2021-0118797mtgabs
- Hu J., Zhang X., Liu H., Fu B., Dong Z., Wang Y. // J. Supercond. Nov. Magn. 2022. V. 35. № 6. P. 1569–1574.
- Nyby C., Guo X., Saal J.E., Chien S.-C., Gerard A.Y., Ke H., Li T., Lu P., Oberdorfer C., Sahu S., Li S., Taylor C.D., Windl W., Scully J.R., Frankel G.S. // Sci. Data. 2021. V. 8. № 1. P. 58. https://doi .org/10.1038/s41597-021-00840-y
- Hu J., Dong C., Li X., Xiao K. // J. Mater. Sci. Technol. 2010. V. 26. № 4. P. 355–361. https://doi .org/10.1016/S1005-0302(10)60058-8
- Chernavsky P.A., Kim N.V., Andrianov V.A., Perfiliev Y.D., Novakova A.A., Perov N.S. // RSC Adv. 2021. V. 11. № 25. P. 15422–15427. https://doi .org/10.1039/D1RA01200B
- Lebedeva O., Kultin D., Kustov L. // Nanomaterials. 2021. V. 11. № 12. P. 3270. https://doi .org/10.3390/nano11123270
- Lebedeva O., Kultin D., Zakharov A., Кustov L. // Surf. Interfaces. 2022. V. 34. P. 102345. https://doi .org/10.1016/j.surfin.2022.102345
- Lebedeva O., Snytko V., Kuznetsova I., Kalmykov K., Kultin D., Root N., Philippova S., Dunaev S., Zakharov A., Kustov L. // Metals. 2020. V. 10. № 5. P. 583. https://doi .org/10.3390/met10050583
- Lebedeva O., Kultin D., Kalmykov K., Snytko V., Kuznetsova I., Orekhov A., Zakharov A., Kustov L. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 1. P. 2025–2032. https://doi .org/10.1021/acsami.0c19392
- Gaikar P.S., Angre A.P., Wadhawa G., Ledade P.V., Mahmood S.H., Lambat T.L. // Curr. Res. Green Sustainable Chem. 2022. V. 5. P. 100265. https://doi .org/10.1016/j.crgsc.2022.100265
- Saverina E.A., Zinchenko D.Y., Farafonova S.D., Galushko A.S., Novikov A.A., Gorbachevskii M.V., Ananikov V.P., Egorov M.P., Jouikov V.V., Syroeshkin M.A. // ACS Sustainable Chem. Eng. 2020. V. 8. № 27. P. 10259–10264. https://doi .org/10.1021/acssuschemeng.0c03133
- Uran S., Veal B., Grimsditch M., Pearson J., Berger A. // Oxid. Met. 2000. V. 54. № 1/2. P. 73–85. https://doi .org/10.1023/A:1004650612791
- Osei-Agyemang E., Balasubramanian G. // npj Mater. Degrad. 2019. V. 3. № 1. P. 20. https://doi .org/10.1038/s41529-019-0082-5
- Pontinha M., Faty S., Walls M.G., Ferreira M.G.S., Cunha Belo M.D. // Corros. Sci. 2006. V. 48. № 10. P. 2971–2986. https://doi .org/10.1016/j.corsci.2005.10.007
- Chang A.S., Tahira A., Chang F., Solangi A.G., Bhatti M.A., Vigolo B., Nafady A., Ibupoto Z.H. // Biosensors. 2023. V. 13. № 1. P. 147. https://doi .org/10.3390/bios13010147
- Kuznetsova I., Lebedeva O., Kultin D., Kalmykov K., Philippova S., Leonov A., Kustov L. // ECS Trans. 2022. V. 109. № 14. P. 87–94. https://doi .org/10.1149/10914.0087ecst
- Zhang L., Xiong X., Yan Y., Gao K., Qiao L., Su Y. // Int. J. Miner. Metall. Mater. 2019. V. 26. № 6. P. 732–739. https://doi .org/10.1007/s12613-019-1803-z
- Garcia-Falcon C.M., Gil-Lopez T., Verdu-Vazquez A., Mirza-Rosca J.C. // Mater. Chem. Phys. 2021. V. 260. P. 124164. https://doi .org/10.1016/j.matchemphys.2020.124164
- Souza C.A.C., Ribeiro D.V., Kiminami C.S. // J. Non Cryst. Solids. 2016. V. 442. P. 56–66. https://doi .org/10.1016/j.jnoncrysol.2016.04.009
- Skulkina N.A., Ivanov O.A., Stepanova E.A., Shubina L.N., Kuznetsov P.A., Mazeeva A.K. // Phys. Metals Metallogr. 2015. V. 116. № 12. P. 1182–1189. https://doi .org/10.1134/S0031918X1512011X
- Vakhitov R.M., Shapayeva T.B., Solonetskiy R.V., Yumaguzin A.R. // Phys. Metals Metallogr. 2017. V. 118. № 6. P. 541–545. https://doi .org/10.1134/S0031918X17040111
- Шалыгина Е.Е., Агапонова А.В., Тараканов О.Н., Рыжиков И.А., Шалыгин А.Н. // Письма в ЖТФ. 2011. Т. 37. № 9. С. 37–44. https://doi .org/10.1134/S1063785011050154
- Агапонова А.В., Шалыгина Е.Е., Тараканов О.Н., Быков И.В., Маклаков С.А., Пухов А.А., Рыжиков И.А., Седова М.В., Якубов И.Т. // Изв. РАН. Сер. физ. 2011. Т. 75. № 2. С. 200–202. https://doi .org/10.3103/S1062873811020031
- Dokukin M.E., Perov N.S., Dokukin E.B., Beskrovnyi A.I., Zaichenko S.G. // Physica B: Condens. Matter. 2005. V. 368. № 1–4. P. 267–272. https://doi .org/10.1016/j.physb.2005.07.020
Supplementary files
