C(2)H-ALKYLATION OF (BENZ)OXAZOLES WITH TERTIARY ALKYL CHLORIDES AND BROMIDES UNDER PHOTOINDUCED PALLADIUM CATALYSIS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method for selective C(2)H alkylation of (benz)oxazoles with tertiary alkyl chlorides and alkyl bromides under photoinduced by visible light (460 nm) catalysis with Pd(PPh3)4/[Bu4N]I system in N,N-dimethylacetamide has been developed. Tetraalkylammonium salt has a significant promoting effect on the reaction which seems to be based on the stabilization of nanosized palladium species in the catalytic system.

Авторлар туралы

I. Lavrentev

Platov South-Russian State Polytechnic University (NPI),

Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

A. Astakhov

Platov South-Russian State Polytechnic University (NPI),

Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

K. Shepelenko

Platov South-Russian State Polytechnic University (NPI),

Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

V. Chernyshev

Platov South-Russian State Polytechnic University (NPI),

Хат алмасуға жауапты Автор.
Email: chern13@yandex.ru
Russian Federation, 346428, Novocherkassk

Әдебиет тізімі

  1. Zhang H.-Z., Zhao Z.-L., Zhou C.-H. // Eur. J. Med. Chem. 2018. V. 144. P. 444–492. https://doi.org/10.1016/j.ejmech.2017.12.044
  2. Ankita P., Sharad W., Faizana F., Chitwan C. // World J. Pharm. Sci. 2018. V. 6. № 10. P. 17–24. https://www.wjpsonline.com/index.php/wjps/article/view/benzoxazoles-mini-review
  3. Thakur A., Verma M., Bharti R., Sharma R. // Tetra-hedron. 2022. V. 119. P. 132813. https://doi.org/10.1016/j.tet.2022.132813
  4. Basak S., Dutta S., Maiti D. // Chem. Eur. J. 2021. V. 27. № 41. P. 10533–10557. https://doi.org/10.1002/chem.202100475
  5. Evano G., Theunissen C. // Angew. Chem., Int. Ed. 2019. V. 58. № 23. P. 7558–7598. https://doi.org/10.1002/anie.201806631
  6. Ankade S.B., Shabade A.B., Soni V., Punji B. // ACS Catal. 2021. V. 11. № 6. P. 3268–3292. https://doi.org/10.1021/acscatal.0c05580
  7. Chen S., Ranjan P., Voskressensky L.G., Van der Eycken E.V., Sharma U.K. // Molecules. 2020. V. 25. № 21. P. 4970. https://doi.org/10.3390/molecules25214970
  8. Bera A., Kabadwal L.M., Bera S., Banerjee D. // Chem. Commun. 2022. V. 58. № 1. P. 10–28. https://doi.org/10.1039/D1CC05899A
  9. Dong Z., Ren Z., Thompson S.J., Xu Y., Dong G. // Chem. Rev. 2017. V. 117. № 13. P. 9333–9403. https://doi.org/10.1021/acs.chemrev.6b00574
  10. Gandeepan P., Müller T., Zell D., Cera G., Warratz S., Ackermann L. // Chem. Rev. 2019. V. 119. № 4. P. 2192–2452. https://doi.org/10.1021/acs.chemrev.8b00507
  11. Khazipov O.V., Shepelenko K.E., Pasyukov D.V., Chesno-kov V.V., Soliev S.B., Chernyshev V.M., Ananikov V.P. // Org. Chem. Front. 2021. V. 8. № 11. P. 2515–2524. https://doi.org/10.1039/D1QO00309G
  12. Chernyshev V.M., Ananikov V.P. // ACS Catal. 2022. V. 12. № 2. P. 1180–1200. https://doi.org/10.1021/acscatal.1c04705
  13. Hansen T., Sun X., Dalla Tiezza M., van Zeist W.-J., Poater J., Hamlin T.A., Bickelhaupt F.M. // Chem. Eur. J. 2022. V. 28. № 26. e202103953. https://doi.org/https://doi.org/10.1002/chem.202103953
  14. Yao T., Hirano K., Satoh T., Miura M. // Chem. Eur. J. 2010. V. 16. № 41. P. 12307–12311. https://doi.org/10.1002/chem.201001631
  15. Wu X., See J.W.T., Xu K., Hirao H., Roger J., Hierso J.-C., Zhou J. // Angew. Chem., Int. Ed. 2014. V. 53. № 49. P. 13573–13577. https://doi.org/10.1002/anie.201408355
  16. Wu X., Lei C., Yue G., Zhou J. // Angew. Chem., Int. Ed. 2015. V. 54. № 33. P. 9601 9605. https://doi.org/10.1002/anie.201504735
  17. Vechorkin O., Proust V., Hu X. // Angew. Chem., Int. Ed. 2010. V. 49. № 17. P. 3061–3064. https://doi.org/10.1002/anie.200907040
  18. Ackermann L., Punji B., Song W. // Adv. Synth. Catal. 2011. V. 353. № 18. P. 3325–3329. https://doi.org/10.1002/adsc.201100487
  19. Patel U.N., Pandey D.K., Gonnade R.G., Punji B. // Organometallics. 2016. V. 35. № 11. P. 1785–1793. https://doi.org/10.1021/acs.organomet.6b00201
  20. Mandapati P., Braun J.D., Sidhu B.K., Wilson G., Herbert D.E. // Organometallics. 2020. V. 39. № 10. P. 1989–1997. https://doi.org/10.1021/acs.organomet.0c00161
  21. Ren P., Salihu I., Scopelliti R., Hu X. // Org. Lett. 2012. V. 14. № 7. P. 1748–1751. https://doi.org/10.1021/ol300348w
  22. Li W., Varenikov A., Gandelman M. // Eur. J. Org. Chem. 2020. V. 2020. № 21. P. 3138–3141. https://doi.org/10.1002/ejoc.201901929
  23. Su X.-L., Ye L., Chen J.-J., Liu X.-D., Jiang S.-P., Wang F.-L., Liu L., Yang C.-J., Chang X. Y., Li Z.-L., Gu Q.-S., Liu X.-Y. // Angew. Chem., Int. Ed. 2021. V. 60. № 1. P. 380–384. https://doi.org/10.1002/anie.202009527
  24. Kancherla R., Muralirajan K., Sagadevan A., Rue-ping M. // Trends Chem. 2019. V. 1. № 5. P. 510–523. https://doi.org/10.1016/j.trechm.2019.03.012
  25. Cheng W.-M., Shang R. // ACS Catal. 2020. V. 10. № 16. P. 9170–9196. https://doi.org/10.1021/acscatal.0c01979
  26. Liu Z., Chen X.-Y. // Chem. 2020. V. 6. № 6. P. 1219–1221. https://doi.org/10.1016/j.chempr.2020.05.015
  27. Cheung K.P.S., Sarkar S., Gevorgyan V. // Chem. Rev. 2022. V. 122. № 2. P. 1543–1625. https://doi.org/10.1021/acs.chemrev.1c00403
  28. Jardim G.A.M., Dantas J.A., Barboza A.A., Paixão M.W., Ferreira M.A.B. // Synthesis. 2022. V. 54. № 21. P. 4629 4645. https://doi.org/10.1055/a-1898-1816
  29. Zhou W.J., Cao G.M., Shen G., Zhu X.Y., Gui Y.Y., Ye J.H., Sun L., Liao L.L., Li J., Yu D.G. // Angew. Chem., Int. Ed. 2017. V. 56. № 49. P. 1568–15687. https://doi.org/10.1002/anie.201704513
  30. Wang G.-Z., Shang R., Fu Y. // Synthesis. 2018. V. 50. № 15. P. 2908–2914. https://doi.org/10.1055/s-0036-1592000
  31. Lee G.S., Kim D., Hong S.H. // Nat. Commun. 2021. V. 12. № 1. P. 991. https://doi.org/10.1038/s41467-021-21270-9
  32. Muralirajan K., Kancherla R., Gimnkhan A., Rueping M. // Org. Lett. 2021. V. 23. № 17. P. 6905–6910. https://doi.org/10.1021/acs.orglett.1c02467
  33. Crabtree R.H. // Chem. Rev. 2015. V. 115. № 1. P. 127–150. https://doi.org/10.1021/cr5004375
  34. Prima D.O., Kulikovskaya N.S., Galushko A.S., Mironenko R.M., Ananikov V.P. // Curr. Opin. Green Sustainable Chem. 2021. V. 31. P. 100502. https://doi.org/10.1016/j.cogsc.2021.100502
  35. Chernyshev V.M., Khazipov O.V., Eremin D.B., Deni-sova E.A., Ananikov V.P. // Coord. Chem. Rev. 2021. V. 437. P. 213860. https://doi.org/10.1016/j.ccr.2021.213860
  36. Polynski M.V., Ananikov V.P. // ACS Catal. 2019. V. 9. № 5. P. 3991–4005. https://doi.org/10.1021/acscatal.9b00207
  37. Ott L.S., Finke R.G. // Coord. Chem. Rev. 2007. V. 251. № 9. P. 1075–1100. https://doi.org/10.1016/j.ccr.2006.08.016
  38. Eremin D.B., Denisova E.A., Yu. Kostyukovich A., Martens J., Berden G., Oomens J., Khrustalev V.N., Chernyshev V.M., Ananikov V.P. // Chem. – Eur. J. 2019. V. 25. № 72. P. 16564–16572. https://doi.org/10.1002/chem.201903221
  39. Shepelenko K.E., Soliev S.B., Galushko A.S., Chernyshev V.M., Ananikov V.P. // Inorg. Chem. Front. 2021. V. 8. № 6. P. 1511–1527. https://doi.org/10.1039/D0QI01411G
  40. Kim D., Lee G.S., Kim D., Hong S.H. // Nat. Commun. 2020. V. 11. № 1. P. 5266. https://doi.org/10.1038/s41467-020-19038-8
  41. Li C., Chen B., Ma X., Mo X., Zhang G. // Angew. Chem., Int. Ed. 2021. V. 60. № 4. P. 2130–2134. https://doi.org/10.1002/anie.202009323
  42. Zhou W.-J., Cao G.-M., Zhang Z.-P., Yu D.-G. // Chem. Lett. 2019. V. 48. № 3. P. 181–191. https://doi.org/10.1246/cl.190006
  43. Chuentragool P., Kurandina D., Gevorgyan V. // Angew. Chem., Int. Ed. 2019. V. 58. № 34. P. 11586–11598. https://doi.org/10.1002/anie.201813523
  44. Ozawa F., Kubo A., Hayashi T. // Chem. Lett. 1992. V. 21. № 11. P. 2177–2180. https://doi.org/10.1246/cl.1992.2177
  45. Grushin V.V., Alper H. // Organometallics. 1993. V. 12. № 5. P. 1890–1901. https://doi.org/10.1021/om00029a052
  46. Fors B.P., Krattiger P., Strieter E., Buchwald S.L. // Org. Lett. 2008. V. 10. № 16. P. 3505–3508. https://doi.org/10.1021/ol801285g
  47. Amatore C., El Kaïm L., Grimaud L., Jutand A., Meignié A., Romanov G. // Eur. J. Org. Chem. 2014. V. 2014. № 22. P. 4709–4713. https://doi.org/10.1002/ejoc.201402519
  48. Zhao W.-M., Chen X.-L., Yuan J.-W., Qu L.-B., Duan L.-K., Zhao Y.-F. // Chem. Commun. 2014. V. 50. № 16. P. 2018–2020. https://doi.org/10.1039/C3CC48069K
  49. Gieshoff T., Kehl A., Schollmeyer D., Moeller K.D., Waldvogel S.R. // Chem. Commun. 2017. V. 53. № 20. P. 2974–2977. https://doi.org/10.1039/C7CC00927E
  50. Koeller J., Gandeepan P., Ackermann L. // Synthesis. 2019. V. 51. № 5. P. 1284–1292. https://doi.org/10.1055/s-0037-1611633
  51. Zhao M.-N., Ning G.-W., Yang D.-S., Fan M.-J., Zhang S., Gao P., Zhao L.-F. // J. Org. Chem. 2021. V. 86. № 3. P. 2957–2964. https://doi.org/10.1021/acs.joc.0c02843

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (139KB)
3.

Жүктеу (226KB)
4.

Жүктеу (146KB)
5.

Жүктеу (82KB)

© И.В. Лаврентьев, А.В. Астахов, К.Е. Шепеленко, В.М. Чернышев, 2023