ON ATTRACTORS OF GINZBURG–LANDAU EQUATIONS IN DOMAIN WITH LOCALLY PERIODIC MICROSTRUCTURE. SUBCRITICAL, CRITICAL AND SUPERCRITICAL CASES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that on the obstacle surface one can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology to the trajectory attractors of the homogenized Ginzburg–Landau equations with an additional potential (in the critical case), without the additional potential (in the subcritical case) in a medium without obstacles, or simply disappear (in the supercritical case).

About the authors

К.А. Bekmaganbetov

Lomonosov Moscow State University, Kazakhstan Branch; Institute of Mathematics and Mathematical Modeling

Author for correspondence.
Email: bekmaganbetov-ka@yandex.kz
Kazakhstan, Astana; Kazakhstan, Almaty

A. A. Tolemys

Eurasian National University named after L.N. Gumilyov; Institute of Mathematics and Mathematical Modeling

Author for correspondence.
Email: abylaikhan9407@gmail.com
Kazakhstan, Astana; Kazakhstan, Almaty

V. V. Chepyzhov

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

Author for correspondence.
Email: chep@iitp.ru
Russia, Moscow

G.А. Chechkin

Lomonosov Moscow State University; Institute of Mathematics with a Computer Center – a division of the Ufa Federal Research Center
of the Russian Academy of Sciences; Institute of Mathematics and Mathematical Modeling

Author for correspondence.
Email: chechkin@mech.math.msu.su
Russian Federation, Moscow; Russian Federation, Ufa; Kazakhstan, Almaty

References

  1. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Strong Convergence of Trajectory Attractors for Reaction–Diffusion Systems with Random Rapidly Oscillating Terms // Communications on Pure and Applied Analysis (CPAA). 2020. V. 19. № 5. P. 2419–2443.
  2. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. “Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain // Chaos, Solitons & Fractals. 2020. V. 140. Art. No 110208.
  3. Бекмаганбетов К.А., Толеубай А.М., Чечкин Г.А. Об аттракторах системы уравнений Навье–Стокса в двумерной пористой среде // Проблемы математического анализа. 2022. Т. 115. С. 15–28.
  4. Chechkin G.A., Chepyzhov V.V., Pankratov L.S. Homogenization of Trajectory Attractors of Ginzburg–Landau equations with Randomly Oscillating Terms // Discrete and Continuous Dynamical Systems. Series B (DCDS-B). 2018. V. 23. № 3. P. 1133–1154.
  5. Бекмаганбетов К.А., Чепыжов В.В., Чечкин Г.А. Сильная сходимость аттракторов системы реакции–диффузии с быстро осциллирующими членами в ортотропной пористой среде // Известия РАН. Серия математическая. 2022. Т. 86. № 6. С. 47–78.
  6. Бабин А.В., Вишик М.И. Аттракторы эволюционных уравнений. М.: Наука, 1989.
  7. Chepyzhov V.V., Vishik M.I. Attractors for equations of mathematical physics. Providence (RI): Amer. Math. Soc., 2002.
  8. Lions J.-L. Quelques méthodes de résolutions des problèmes aux limites non linкires. Paris: Dunod, Gauthier-Villars, 1969.
  9. Temam R. Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematics Series. V. 68. New York (NY): Springer-Verlag, 1988.
  10. Chepyzhov V.V., Vishik M.I. Evolution equations and their trajectory attractors // J. Math. Pures Appl. 1997. V. 76. № 10. P. 913–964.
  11. Mielke A. The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors // Nonlinearity. 1997. V. 10. P. 199–222.
  12. Лионс Ж.-Л., Мадженес Е. Неоднородные граничные задачи и их приложения. М.: Мир, 1971.
  13. Жиков В.В. Об усреднении в перфорированных случайных областях общего вида // Матем. заметки. 1993. Т. 53. № 1. С. 41–58.
  14. Conca C. On the application of the homogenization theory to a class of problems arising in fluid mechanics. // J. Math. Pures Appl. 1985. (9) 64. № 1. P. 31–75.
  15. Беляев А.Г., Пятницкий А.Л., Чечкин Г.А. Асимптотическое поведение решения краевой задачи в перфорированной области с осциллирующей границей // Сиб. матем. журн. 1998. Т. 39. № 4. С. 730–754.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 К.А. Бекмаганбетов, А.А. Толемис, В.В. Чепыжов, Г.А. Чечкин