НОВЫЕ АСПЕКТЫ ПРИМЕНЕНИЯ МИНЕРАЛОПРОФИЛАКТИКИ В АМБУЛАТОРНЫХ УСЛОВИЯХ
- Авторы: Рязанова Е.А.1, Баранников В.Г.1, Кириченко Л.В.1, Дементьев С.В.2, Сидорова Д.А.1
-
Учреждения:
- Пермский государственный медицинский университет им. академика Е. А. Вагнера
- НПК «Лечебный климат», г. Чайковский
- Выпуск: Том 32, № 4 (2015)
- Страницы: 78-84
- Раздел: Статьи
- Статья получена: 12.07.2016
- Статья опубликована: 15.08.2015
- URL: https://permmedjournal.ru/PMJ/article/view/3374
- DOI: https://doi.org/10.17816/pmj32478-84
- ID: 3374
Цитировать
Полный текст
Аннотация
Ключевые слова
Полный текст
Введение В последние годы в физиотерапии активно используют естественные лечебные факторы природных калийных солей, в частности сильвинита (сильвин+галит), добыча которого ведется в рудниках Верхнекамского месторождения Пермского края (Западный Урал) [7]. Эксплуатация наземных сильвинитовых сооружений способствовала широкому распространению солетерапии в комплексном лечении различных форм заболеваний [4, 5]. Для использования данного физиотерапевтического метода в профилактических целях в условиях поликлиник нами были разработаны и запатентованы новые технически усовершенствованные и менее затратные устройства, применение которых потребовало гигиенической и экономической оценки. Цель исследований - обоснование с гигиенических и экономических позиций возможности применения современных сильвинитовых устройств в поликлиниках. Материалы и методы исследования В качестве объектов гигиенического изучения были выбраны: а) соляная сильвинитовая микроклиматическая палата «Сильвин-Универсал®» (СМП «С-У»); б) физиотерапевтический сильвинитовый кабинет (ФСК), оборудованный двумя сильвинитовыми устройствами. Исследования факторов внутрипалатной среды проводили традиционными гигиеническими методами с помощью общепринятой аппаратуры. Температуру и относительную влажность воздуха измеряли электронным прибором Center-311, температуру ограждающих поверхностей - съемным датчиком (К-типа) данного прибора. Подвижность воздуха определяли спиртовым кататермометром Хилла. Оценку параметров микроклимата проводили согласно ГОСТ 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях». Радиационный фон изучали прибором РД-1503. Результаты сопоставляли с СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности» (НРБ - 99/2009). Аэроионизацию воздушной среды регистрировали с помощью малогабаритного счетчика аэроионов МАС-01 в соответствии с МУ 4.3.1517-03 «Санитарно-эпидемиологическая оценка и эксплуатация аэроионизирующего оборудования» и МУК 4.3.1675-03 «Общие требования к проведению контроля аэроионного состава воздуха». Многокомпонентный мелкодисперсный соляной аэрозоль исследовали с помощью прибора «Аэрокон». Годовой экономический эффект от использования указанных объектов рассчитывали по формуле Эгод = [(Лх + Ух) - (Лу + Уу)] С, где Эгод - среднегодовая экономия при внедрении медицинской технологии, рассчитанная на объем внедрения; Лх, Лу - затраты на лечение одного случая заболевания при базовой и предлагаемой медицинской технологии; Ух, Уу - потери в связи с временной утратой трудоспособности в расчете на один случай заболевания при базовой и предлагаемой медицинской технологии; С - среднегодовое количество случаев заболевания, обеспечиваемое объемом внедрения предлагаемой медицинской технологии. Статистическую обработку материалов выполняли с использованием стандартных пакетов программ прикладного статистического анализа: Microsoft Excel (Microsoft Corporation, USA) и Statistica (StatSoft. Inc., USA). Результаты и их обсуждение Оригинальная сильвинитовая палата «Сильвин-Универсал»® - результат модернизации ранее разработанных соляных микроклиматических камер [6]. Она содержит двойную сборно-разборную оболочку, снабженную вытяжным вентилятором, системой притока воздуха с фильтром-насытителем, и покрыта внутри эталонными кусочками сильвина полусферической формы, что позволяет значительно увеличить площадь реакционной поверхности для протекания процессов массообмена и хемосорбции [3]. Воздух насыщается электрически заряженными аэроионами и частицами соли за счет радиоактивного излучения соляных поверхностей сильвина и естественных процессов, связанных с динамичным отрывом легких электрически заряженных частиц с этих устройств и их дальнейшим рассеиванием. Использованный воздух выводится из палаты, поверхность стен которой гладкая, с влагостойким покрытием. Конструктивные особенности соляной микроклиматической палаты «Сильвин-Универсал» позволяют производить эффективную профилактическую обработку жидкими дезинфицирующими средствами внутренних поверхностей сооружения. Перед очередным сеансом солетерапии открываются ставни с нанесенными на них кусочками сильвина, что ускоряет процесс реституции физических факторов. Палата снабжена деревянными кроватями с сетками из натуральных нитей. Обеззараживание воздуха осуществляется с помощью бактерицидных ультрафиолетовых облучателей закрытого типа Дезар-2. Одна лампа размещена в палате, а другая - внутри соляной оболочки. Общее и местное, а также декоративное освещение, устанавливаемое по периметру наружной поверхности палаты, осуществляется с помощью ламп малой мощности, исключающих нагрев соляного покрытия. Общая площадь соляного помещения - 28 м2, объем - 125м3. Палата рассчитана на одновременное нахождение 4 человек с одинаковой патологией. Нами был разработан физиотерапевтический сильвинитовый кабинет - малозатратное сооружение, поверхность стен которого в зоне размещения пациентов облицована плитками калийных солей. В его состав также входит соляной фильтр, заполненный дробленым сильвинитом. При прохождении через него воздух подвергается очистке и насыщению частицами соляного многокомпонентного аэрозоля. Данный физиотерапевтический кабинет рассчитан на одновременное пребывание двух пациентов. Площадь реакционной поверхности на одного человека составляет 2,7 м² и способствует интенсивному воздействию основных лечебных факторов ФСК. Особенностью ФСК является возможность регулирования концентрации многокомпонентного соляного аэрозоля за счет специально разработанного генератора, который позволяет получать различные параметры массовой концентрации соляного аэрозоля и применять его для профилактики многих видов заболеваний [1]. Анализ исходных показателей факторов внутренней среды данных сильвинитовых сооружений проводили до начала физиотерапевтических сеансов без присутствия пациентов. Гигиенические исследования параметров микроклимата в СМП «С-У» выявили, что температура воздуха составляла 20,98 ± 0,25 °C. Утром ее уровень был ниже по сравнению с дневными часами: 20,7 ± ± 0,14 и 21,2 ± 0,13 °C соответственно (p < < 0,05). Относительная влажность воздуха подвергалась аналогичным изменениям в течение дня и в зависимости от сезонов года. Среднегодовой уровень относительной влажности составил 51,5 ± 0,7 %. Скорость движения воздуха при всех замерах не превышала допустимых показателей и находилась в течение года в пределах от 0,2 ± 0,01 до 0,12 ± 0,02 м/с. Температура ограждающих соляных поверхностей составляла 17,8 ± 0,01 °C. Ее более высокие значения отмечались в летнее время (18,5 ± 0,03 °C). Минерал сильвин, входящий в состав сильвинита и состоящий из хлористого калия, является источником слабо ионизирующего излучения за счет содержания изотопов естественного происхождения К-40. Среднее значение исследованного радиационного фона в соляном помещении без пациентов составляло 0,14 ± 0,002 мкЗв/ч, причем его наибольшие уровни отмечались во второй половине дня. Мощность дозы γ-излучения в утренние часы была 0,13 ± 0,001 мкЗв/ч, а в дневные - 0,15 ± 0,0003 мкЗв/ч (p < 0,05). Данная динамика соответствует естественным колебаниям радиационного фона в течение суток в условиях подземного стационара в калийном руднике [2]. Статистически достоверные различия в показателях радиоактивности в СМП «С-У» отмечались в разные сезоны года. Летом его величина была выше (0,16 ± 0,0008 мкЗв/ч), чем в осенний период (0,13 ± 0,001 мкЗв/ч; р < 0,05). Анализ аэроионизационной составляющей воздушной среды соляной микроклиматической палаты «Сильвин-Универсал» показал, что в летние месяцы количество легких отрицательных аэроионов достоверно преобладало по сравнению с холодным временем года, составляя соответственно 606,3 ± 2,7 и 467,9 ± 15,5 ион/см³. При оценке уровней легких положительных аэроионов в разные сезоны года выявлена обратная динамика: среднее значение в холодные месяцы было выше (320,8 ± 13,4 ион/см³), чем летом - (300,99±4,01 ион/см³) (p < 0,05). Динамика концентрации аэроионов с отрицательным знаком в течение суток коррелировала с аналогичными изменениями радиационного фона (r = 0,73; p < 0,05): утром - 572,96 ± ± 7,9 ион/см³, днем - 555,8 ± 8,6 ион/см³ (p > 0,05). Количество легких положительных аэроионов в СМП «С-У» в дневные часы при отсутствии пациентов составило 317,2 ± ± 7,7 ион/см³, а утром - 295,3 ± 5,9 ион/см³ (p < 0,05). Коэффициент униполярности, рассчитываемый как отношение положительных аэроионов к отрицательным, при всех измерениях находился в диапазоне от 0,54 ± 0,02 до 0,63 ± 0,03 (при норме не более 1). Среднегодовая концентрация многокомпонентного сухого соляного аэрозоля в воздухе палаты «Сильвин-Универсал» равнялась 0,46 ± 0,02 мг/м³. Наибольшее количество аэрозоля регистрировалось в утренние часы (0,42 ± 0,01 мг/м³), несколько снижаясь к концу дня (0,38 ± 0,02 мг/м³). Содержание аэрозоля в воздухе палаты в течение года увеличивалось летом до 0,51 ± 0,0006 мг/м³, а осенью достоверно снижалось до 0,33 ± 0,0006 мг/м³, оставаясь в пределах терапевтически значимых уровней. Фоновые показатели в ФСК находились в пределах существующих санитарных правил и норм для учреждений, осуществляющих лечебную деятельность. Внутренняя среда характеризовалась стабильным микроклиматом на протяжении всего дня: температура воздуха - 20,6 ± 0,06 °С, относительная влажность - 45,4 ± 0,53 %, подвижность воздуха - 0,15 ± 0,01 м/с, температура ограждающих поверхностей - 18,4 ± 0,2 °С. Среднее значение радиационного фона было несколько выше естественного, но не превышало допустимого уровня и составляло 0,16±0,007 мкЗв/ч. Его максимальные значения отмечались утром - 0,17 ± ± 0,003 мкЗв/ч, а минимальные в дневные часы - 0,13 ± 0,004 мкЗв/ч (p < 0,05). Наибольшая концентрация легких отрицательных ионов определялась утром - 560,0 ± 14,5 ион/см³, снижаясь днем до 521,7 ± 17,6 ион/см³ (p < 0,05). Выявлена прямая корреляционная связь между уровнем радиационного фона и содержанием легких аэроионов с отрицательным знаком (r = 0,7; p < 0,05). При анализе содержания положительных аэроионов отмечалась обратная динамика: высокая концентрация регистрировалась в дневные часы - 270,4 ± 15,2 ион/см³. Коэффициент униполярности, характеризующий отношение легких разнозаряженных ионов, на протяжении всего дня был менее единицы. Содержание соляного аэрозоля в воздухе ФСК поддерживалось с помощью специально предложенного генератора. В утренние часы его концентрация без дополнительного распыления составляла 0,32 ± ± 0,006 мг/м3, а с распылением - 0,76 мг/м³ (p < 0,05). В дневное время наблюдались аналогичные изменения: 0,32 ± 0,08 мг/м³ в обычных условиях и 0,75 ± 0,08 мг/м³ при функционировании солегенератора (p < < 0,05). Расчет необходимого количества аэрозоля осуществляли в соответствии с допустимыми уровнями (не более 2,0 мг/м³). Физические факторы ФСК (микроклимат и радиационный фон) в теплый и холодный периоды года были стабильны. Максимальные концентрации легких отрицательных аэроионов регистрировались в теплые месяцы - 598,5 ± 23,8 ион/см³ (p < 0,05). Изменения положительных ионов не имели достоверных отличий: лето - 211,5 ± 13,2 ион/см³, осень - 221,8 ± ± 14,7 ион/см³ (p > 0,05). Коэффициент униполярности на протяжении всех исследований оставался ниже единицы. Уровень соляного аэрозоля в воздухе ФСК не зависел от сезона года, составляя в среднем 0,33 ± 0,004 и 0,79 ± 0,003 мг/м³ за счет функционирования специального генератора. Гигиенические факторы предложенных моделей сильвинитовых сооружений из калийных солей Верхнекамского месторождения максимально приближены к уровням лечебных факторов соляных микроклиматических палат, разработанных ранее и эксплуатируемых в России и за рубежом [7]. В процессе сеансов минералопрофилактики изучение гигиенических факторов сильвинитовых сооружений показало, что микроклимат на протяжении всего дня, а также в разные сезоны года в соляной микроклиматической палате «Сильвин-Универсал» не претерпевал выраженных изменений и соответствовал оптимальным гигиеническим нормам. Радиационный фон в динамике физиотерапевтического сеанса составлял 0,14 ± ± 0,002 мкЗв/ч, уменьшаясь к концу до 0,13 ± 0,002 мкЗв/ч (р < 0,05). Наибольшие его уровни отмечались во второй половине дня. Летом величина γ-излучения была выше (0,16 ± 0,014 мкЗв/ч), чем в осенний (0,14 ± 0,007 мкЗв/ч) период (р < 0,05). Данные изменения соответствовали естественным суточным колебаниям радиационного фона, которые составляли 0,10 ± 0,003 мкЗв/ч в теплое и 0,08 ± 0,001 мкЗв/ч в холодное время года. Наименьшие концентрации отрицательно заряженных ионов в воздухе палаты регистрировались в дневные часы. В летние месяцы число легких отрицательных аэроионов было достоверно выше и составляло 606,3 ± 2,7 ион/см³. Данное обстоятельство обусловлено влиянием повышенных температур воздуха на процессы аэроионизации. К середине сеанса происходило достоверное уменьшение легких отрицательных ионов до 565,5 ± 8,5 ион/см3, а в конце - до 549,4 ± 10,06 ион/см3. При этом концентрация легких положительных аэроионов в середине сеанса достоверно увеличилась до 283,1 ± 13,5 ион/см3, достигая максимальных значений при завершении сеанса. Коэффициент униполярности при всех измерениях оставался менее единицы. Концентрация соляного аэрозоля в воздухе СМП «С-У» несколько снижалась к завершению сеанса за счет его вдыхания пациентами (p > 0,05). Выраженной динамики уровней сильвинитового аэрозоля в течение суток и в различные сезоны года в СМП «С-У» не происходило. Использование системы воздухоподготовки в ФСК во время пребывания там пациентов способствовало поддержанию стабильных параметров микроклимата вне зависимости от сезона года и времени суток. Радиационный фон в начале и середине сеансов солепрофилактики был постоянным (0,14 ± 0,002 мкЗв/ч), снижаясь к концу сеанса (p < 0,05). Его уровни претерпевали изменения в течение дня (0,17 ± 0,003 мкЗв/ч - утро; 0,13 ± 0,004 мкЗв/ч - день) и года (0,16 ± 0,004 мкЗв/ч - лето; 0,14 ± ± 0,005 мкЗв/ч - осень). Для изучения особенностей внутренней среды данного сооружения нами были проведены две серии гигиенических исследований. Первая - при неработающем генераторе, вторая - при его включении в середине сеанса минералопрофилактики (на тридцатой минуте). При этом выявили, что концентрация аэроионов находилась в прямой зависимости от работы солегенератора. При выключенном устройстве уровень легких отрицательных аэроионов постепенно снижался, составляя к концу сеанса 483,4 ± 16,7 ион/см3 (p < 0,05). Содержание легких положительных ионов достигало максимальных значений в середине сеанса минералопрофилактики (p < 0,05), после чего происходило его снижение до 227,5 ± 15,9 ион/см3. Концентрация многокомпонентного сухого соляного аэрозоля равнялась 0,39 ± 0,06 мг/м³ в начале сеанса и 0,25 ± 0,05 мг/м³ в конце. Данные изменения связаны с активным дыханием пациентов, а также процессами оседания сильвинитовых частиц на ограждающих поверхностях. Во время функционирования генератора содержание ионов с отрицательным знаком резко уменьшалось: на 30-й минуте - 442,7 ± ± 1,4 ион/см³ (p < 0,05), в конце - 413,2 ± ± 0,8 ион/см³ (p < 0,05). Количество легких положительных аэроионов изменялось по-другому: с началом работы устройства их число увеличивалось до 347 ± 2,7 ион/см³ (p < 0,05), а по окончании равнялось 359 ± ± 2,8 ион/см³ (p < 0,05). Выявлена прямая корреляционная связь между уровнем положительных ионов и увеличением концентрации сильвинитового аэрозоля (r = 0,3; p < 0,05). Коэффициент униполярности при всех замерах оставался менее единицы, свидетельствуя о положительной аэроионизационной среде в ФСК во время сеансов. При этом количество соляного аэрозоля в воздухе ФСК подвергалось выраженным изменениям: в начале исследований его концентрация была 0,42 ± ± 0,07 мг/м³, увеличиваясь в середине сеанса до 0,89±0,04 мг/м³ и уменьшаясь к концу сеанса до 0,65±0,04 мг/м³. Сравнительная характеристика основных параметров внутренней среды соляной микроклиматической палаты «Сильвин-Универсал» и физиотерапевтического сильвинитового кабинета в присутствии пациентов установила, что легких отрицательных аэроионов на 12 % больше в СМП «С-У», чем в ФСК. Содержание многокомпонентного сухого высокодисперсного соляного аэрозоля, начиная с середины сеанса, в ФСК было в 2 раза больше по сравнению с СМП «С-У». Проведенные гигиенические исследования показали способность сильвинитовых сооружений обеспечивать стабильность основных биопозитивных параметров при отсутствии пациентов. Во время сеансов минералопрофилактики наблюдалось постепенное снижение физических показателей внутренней среды, требующее обязательного соблюдения и проведения гигиенических мероприятий по их реституции. Дальнейшее внедрение в практическое здравоохранение современных сильвинитовых сооружений позволит снизить затраты на профилактику сердечно-сосудистых и дыхательных заболеваний. Годовой экономический эффект (Эгод) от применения СМП «С-У» для профилактики сердечно-сосудистых заболеваний составит: Эгод = [(9578,42 + 1469,7) - - (1440 + 0)]16 = 153 729,92 рубля. Эгод от применения СМП «С-У» для профилактики заболеваний дыхательной системы: Эгод = [(6505,47 + 1469,7) - (1440 + 0)]16 = = 104 562,72 рубля. Эгод от применения ФСК для профилактики сердечно-сосудистых заболеваний составит: Эгод = [(9578,42 + 1515,9) - (1440 + + 0)]24 = 231 703,68 рубля. Эгод от функционирования ФСК для профилактики заболеваний дыхательной системы: Эгод = [(6505,47 + 1515,9) - (1440 + + 0)]24 = 157 952,88 рубля. Выводы 1. Гигиеническая оценка основных параметров современных соляных устройств показала улучшение эффекта за счет их конструктивных особенностей. Зафиксировано увеличение количества легких аэроионов с отрицательным знаком в СМП «С-У» на 12 %, концентрация многокомпонентного сухого соляного аэрозоля в ФСК возрастала в 2 раза. 2. В процессе сеансов минералопрофилактики постепенно снижались значения основных параметров внутренней среды сильвинитовых сооружений, которые требуют проведения гигиенических и специальных санитарно-технических мероприятий. 3. Управляемая дозированная подача соляного аэрозоля в ФСК обеспечивала оптимальную концентрацию аэрозоля сильвинита во второй половине сеанса. 4. Гигиенические условия, создаваемые в современных сооружениях из калийных солей, обеспечивают выраженный экономический эффект от их применения.Об авторах
Елизавета Андреевна Рязанова
Пермский государственный медицинский университет им. академика Е. А. Вагнера
Email: Lisaveta08@mail.ru
ассистент кафедры коммунальной гигиены и гигиены труда
Владимир Григорьевич Баранников
Пермский государственный медицинский университет им. академика Е. А. Вагнерадоктор медицинских наук, профессор, заведующий кафедрой коммунальной гигиены и гигиены труда
Лариса Викторовна Кириченко
Пермский государственный медицинский университет им. академика Е. А. Вагнерадоктор медицинских наук, доцент кафедры коммунальной гигиены и гигиены труда
Сергей Васильевич Дементьев
НПК «Лечебный климат», г. Чайковскийдиректор
Дарья Александровна Сидорова
Пермский государственный медицинский университет им. академика Е. А. Вагнераассистент кафедры коммунальной гигиены и гигиены труда
Список литературы
- Баранников В.Г., Дементьев С.В., Ахматдинов О.С. Устройство для приготовления и подачи аэрозоля в соляную микроклиматическую палату: пат. 2004133935/22 РФ / № 44500; заявл. 23.11.2004; опубл. 27.03.2005. Бюл. № 9:6.
- Баранников В. Г., Красноштейн А. Е., Папулов Л. М., Туев А. В., Черешнев В. А. Спелеотерапия в калийном руднике. Екатеринбург: УроРАН 1996; 173.
- Дементьев С. В., Ахматдинов О. С., Баранников В. Г., Кириченко Л. В., Киреенко Л. Д. Индивидуальная соляная сильвинитовая палата для лечения различных нозологических форм заболеваний: пат. 2008116865 РФ, № 2372885; заявл. 28.04.08; опубл. 20.11.09. Бюл. № 32:7.
- Кириченко Л. В., Баранников В. Г. Гигиеническая оценка условий проведения минералотерапии. Гигиена и санитария 2012; 2: 23-25.
- Кириченко Л. В., Баранников В. Г., Дементьев С. В., Киреенко Л. Д. Гигиенические факторы солелечения и их влияние на физиологические и иммунологические реакции организма пациентов. Пермский медицинский журнал 2007; 1-2 (24): 84-89.
- Рязанова Е. А., Баранников В. Г., Кириченко Л. В., Дементьев С. В., Варанкина С. А., Хохрякова В. П. Сравнительная гигиеническая характеристика современных методов солелечения. Пермский медицинский журнал 2014; 3 (31): 65-69.
- Черешнев В. А., Баранников В. Г., Кириченко Л. В., Дементьев С. В. Физиолого-гигиеническая концепция спелео- и солелечения. РИО УрО РАН 2013; 184.
Дополнительные файлы
