Thin textured CdTe films on silicon and sapphire substrates: thermal vapor deposition and structural characterization

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Thin films of CdTe were grown on Si (111) and Al2O3 (0001) substrates by thermal deposition from the gas phase. The obtained films were studied using atomic force microscopy, scanning electron microscopy, and X-ray diffraction analysis. It was found that on Al2O3 (0001) substrates, thin films of both wurtzite and sphalerite modifications of CdTe can be obtained. On Si substrates, thin films of the sphalerite modification of CdTe can be obtained. It is shown that the elemental composition of thin films is close to stoichiometry, and in the case of thin films grown on Al2O3 (0001), the deviation did not exceed 1 at. %.

Texto integral

Acesso é fechado

Sobre autores

I. Koshelev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: iliakoscheleff@yandex.ru
Rússia, Moscow

I. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: iliakoscheleff@yandex.ru
Rússia, Moscow

P. Podkur

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: iliakoscheleff@yandex.ru
Rússia, Moscow

D. Khairetdinova

MISIS National University of Science and Technology

Email: iliakoscheleff@yandex.ru
Rússia, Moscow

I. Doludenko

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: iliakoscheleff@yandex.ru
Rússia, Moscow

V. Kanevsky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: iliakoscheleff@yandex.ru
Rússia, Moscow

Bibliografia

  1. Owens A., Peacock A. // Nucl. Instrum. Methods Phys. Res. A. 2004. V. 531. P. 18. https://doi.org/10.1016/j.nima.2004.05.071
  2. Fonthal G., Tirado-Mejıa L., Marın-Hurtado J.I. et al. // J. Phys. Chem. Solids. 2000. V. 61. № 4. P. 579. https://doi.org/10.1016/S0022-3697(99)00254-1
  3. Rühle S. // Sol. Energy. 2016. V. 130. P. 139. https://doi.org/10.1016/j.solener.2016.02.015
  4. Munshi A.H., Kephart J.M., Abbas A. et al. // Sol. Energy Mater. Sol. Cells. 2018. V. 176. P. 9. https://doi.org/10.1016/j.solmat.2017.11.031
  5. Ivanov Yu.M. // J. Сryst. Growth. 1996. V. 161. № 1–4. P. 12. https://doi.org/10.1016/0022-0248(95)00604-4
  6. Михайлов В.И., Поляк Л.Е. // Поверхность. Рентген., синхротр. и нейтр. исслед. 2021. Т. 7. C. 43. https://doi.org/10.31857/S102809602107013X
  7. Zhang S., Zhang J., Qiu X. et al. // J. Cryst. Growth. 2020. V. 546. P. 125756. https://doi.org/10.1016/j.jcrysgro.2020.125756
  8. Михайлов В., Буташин А., Каневский В. и др. // Поверхность. Рентген., синхротр. и нейтр. исслед. 2011. Т. 6. C. 97.
  9. Ramanujam J., Bishop D., Todorov T. et al. // Prog. Mater. Sci. 2020. V. 110. P. 100619. https://doi.org/10.1016/j.pmatsci.2019.100619
  10. Dharmadasa I., Echendu O., Fauzi F. et al. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. P. 2343. https://doi.org/10.1007/s10854-016-5802-9
  11. Quintana-Silva G., Sobral H., Rangel-Cárdenas J. // Chemosensors. 2022. V. 11. № 1. P. 4. https://doi.org/10.3390/chemosensors11010004
  12. Quiñones-Galván J., Camps E., Campos-González E. et al. // J. Appl. Phys. 2015. V. 118. № 12. P. 125304. https://doi.org/10.1063/1.4931677
  13. Гельман Ю., Дымшиц Ю., Самохвалов Ю. и др. // Приборы и техника эксперимента. 1994. № 5. C. 181.
  14. Jiménez-Sandoval S., Meléndez-Lira M., Hernández-Calderón I. // J. Appl. Phys. 1992. V. 72. № 9. P. 4197. https://doi.org/10.1063/1.352230
  15. Zanio K. Semiconductors and Semimetals. V. 13. New York: Academic press, INC., 1978. 235 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The location of the substrate relative to the CdTe spraying area in the thermal spraying unit (a) and the dependence of the deviation of the Cd content (at. %) on stoichiometry (b)

Baixar (177KB)
3. Fig. 2. X–ray diffractograms of CdTe thin films grown on Si (a) and Al2O3 (b) substrates. The inset shows an enlarged diffractogram area for a thin film grown on an Al2O3 substrate in the angle range 42°-52°. The curve numbers correspond to the area numbers in Fig. 1a

Baixar (237KB)
4. Fig. 3. AFM images of a thin CdTe film grown on an Al2O3 (0001) substrate: a, b, c – regions 1, 2, 3, respectively. The inset shows an enlarged view of large crystallites, presumably of the hexagonal phase of wurtzite

Baixar (258KB)
5. Fig. 4. AFM images of a thin CdTe film grown on a Si (111) substrate: a, b, c – regions 1, 2, 3, respectively. The inset shows an enlarged view of area 1

Baixar (223KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024