Неэмпирический расчет редуцированных квартичных, секстичных и октичных постоянных эффективных колебательно-вращательных гамильтонианов на основе операторной теории возмущений
- Authors: Ефремов И.М.1,2, Миллионщиков Д.В.1,3, Краснощеков С.В.4
-
Affiliations:
- Московский государственный университет имени М. В. Ломоносова
- Институт биохимической физики им. Н. М. Эмануэля Российской академии наук
- Северо-Западный центр математических исследований имени Софьи Ковалевской, Псковский государственный университет
- Московский государственный университет имени М. В. Ломоносова, Химический факультет
- Issue: Vol 98, No 5 (2024)
- Pages: 78-89
- Section: ВЫЧИСЛИТЕЛЬНАЯ И КВАНТОВАЯ ХИМИЯ
- Submitted: 27.02.2025
- Published: 29.12.2024
- URL: https://permmedjournal.ru/0044-4537/article/view/668986
- DOI: https://doi.org/10.31857/S0044453724050106
- EDN: https://elibrary.ru/PJSWLL
- ID: 668986
Cite item
Abstract
Сверхсложные колебательно-вращательные спектры свободных малоатомных молекул, содержащие десятки и сотни тысяч наблюдаемых линий в микроволновом и инфракрасном диапазоне, удобно описывать моделями на основе наборов эффективных колебательно-вращательных гамильтонианов, параметризованных небольшим числом спектроскопических редуцированных квартичных, сектичных и октичных постоянных. Эти величины, как правило, находят путем решения обратных задач, сочетая поэтапную интерпретацию спектра с подгонкой параметров. Для равновесных ядерных конфигураций квартичные и секстичные постоянные могут рутинно вычисляться по аналитическим формулам, в то время как определение колебательно возбужденных, а также октичных постоянных сталкивается со значительными сложностями теоретического и расчетного характера. В данном исследовании предлагается теоретический метод и описаны вычислительные алгоритмы для расчета редуцированных параметров эффективных гамильтонианов в четвертом и шестом порядках операторной теории возмущений. Показано, что в четвертом квартичные, а в шестом секстичные постоянные лучше согласуются с экспериментом. Получаемые в шестом порядке октичные постоянные могут использоваться для проверки или уточнения при решении обратной задачи. Теоретические результаты проиллюстрированы на примере расчета двух изотопологов молекулы SO2.
About the authors
И. М. Ефремов
Московский государственный университет имени М. В. Ломоносова; Институт биохимической физики им. Н. М. Эмануэля Российской академии наук
Email: sergeyk@phys.chem.msu.ru
Химический факультет
Russian Federation, 119899, Москва; 119334, МоскваД. В. Миллионщиков
Московский государственный университет имени М. В. Ломоносова; Северо-Западный центр математических исследований имени Софьи Ковалевской, Псковский государственный университет
Email: sergeyk@phys.chem.msu.ru
Механико-Математический факультет
Russian Federation, 119899, Москва; ПсковС. В. Краснощеков
Московский государственный университет имени М. В. Ломоносова, Химический факультет
Author for correspondence.
Email: sergeyk@phys.chem.msu.ru
Russian Federation, 119899, Москва
References
- Gordon I.E., Rothman L.S., Hargreaves R.J. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P. 107949(1–82). doi: 10.1016/j.jqsrt.2021.107949
- Jacquinet-Husson N., Armante R., Scott N.A. et al. // J. Mol. Spectrosc. 2016. V. 327. P. 31. doi: 10.1016/j.jms.2016.06.007
- Tennyson J., Yurchenko S.N., Al-Refaie A.F. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 255. P. 107228. doi: 10.1016/j.jqsrt.2020.107228
- Endres C.P., Schlemmer S., Schilke P. et al. // J. Mol. Spectrosc. 2016. V. 327. P. 95. doi: 10.1016/j.jms.2016.03.005
- Handbook of High-resolution Spectroscopy. V. 1–3. Ed. by M. Quack and F. Merkt. 2011. John Wiley & Sons, Ltd. Chichester, UK. 2182 P. doi: 10.1002/9780470749593
- Watson J.K.G. // J. Chem. Phys. 1967. V. 46. № 5. P. 1935. doi: 10.1063/1.1840957
- Aliev M.R., Watson J.K.G. // J. Mol. Spectrosc. 1976. V. 61. № 1. P. 29. doi: 10.1016/0022-2852(76)90379-9
- Watson J.K.G., Durig J.R. Vibrational Spectra and Structure. A.: Elsevier, 1977. V. 6. P. 1.
- Aliev M.R., Watson J.K.G. Higher–Order Effects in the Vibration–Rotation Spectra of Semi-rigid Molecules. In: K.N. Rao (Ed.), Molecular Spectroscopy: Modern Research. New York: Academic Press, 1985. V. III. P. 1.
- Watson J.K.G. // J. Mol. Struct. 2006. V. 795. № 1–3. P. 263. doi: 10.1016/j.molstruc.2006.02.038
- Papoušek D., Aliev M.R. Molecular Vibrational/Rotational Spectra. Prague: Academia, 1982. 323 p.
- VanVleck J.H. // Phys. Rev. 1929. V. 33. № 4. P. 467. doi: 10.1103/PhysRev.33.467
- Primas H. // Rev. Mod. Phys. 1963. V. 35. № 3. P. 710. doi: 10.1103/RevModPhys.35.710
- Birss F.W., Choi J.H. // Phys. Rev. A. 1970. V. 2. № 4. P. 1228. doi: 10.1103/PhysRevA.2.1228
- Макушкин Ю.С., Тютерев В.Г. Методы возмущений и эффективные гамильтонианы в молекулярной спектроскопии. Новосибирск: Наука, 1984. 240 с.
- Sibert III E.L. // J. Chem. Phys. 1988. V. 88. № 7. P. 4378. doi: 10.1063/1.453797
- Chang X., Millionshchikov D.V., Efremov I.M. et al. // J. Chem. Phys. 2023. V. 158. № 10. P. 104802. doi: 10.1063/5.0142809
- Watson J.K.G. // Mol. Phys. 1968. V. 15. № 5. P. 479. doi: 10.1080/00268976800101381
- Tyuterev V.G., Tashkun S.A., Seghir H. // Proc. SPIE2004. V. 5311. P. 165. doi: 10.1117/12.545641
- Lamouroux J., Tashkun S.A., Tyuterev V.G. // Chem. Phys. Lett. 2008. V. 452. № 1–3. P. 225. doi: 10.1016/j.cplett.2007.12.061
- Tyuterev V., Tashkun S., Rey M. et. al. // Mol. Phys. 2022. V. 120. № 15–16. P. e2096140(1–53). doi: 10.1080/00268976.2022.2096140
- Алиев М.Р., Алексанян В.Т. // Оптика и спектроскопия. 1968. Т. 24. № 4. С. 520.
- Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. // J. Phys. Chem. A. 2012. V. 116. № 14. P. 3691. doi: 10.1021/jp211400w
- Joyeux M., Sugny D. // Can. J. Phys. 2002. V. 80. № 12. P. 1459. doi: 10.1139/P02-075
- Niroomand-Rad A., Parker P.M. // J. Mol. Spectrosc. 1979. V. 75. № 3. P. 454. doi: 10.1016/0022-2852(79)90089-4
- Niroomand-Rad A., Parker P.M. // Ibid. 1981. V. 85. № 1. P. 40. doi: 10.1016/0022-2852(81)90308-8
- Watson J.K.G. // Ibid. 1983. V. 101. № 1. P. 83. doi: 10.1016/0022-2852(83)90008-5
- Чан С. Систематические неэмпирические прямые методы описания колебательно-вращательных состояний полужестких молекул на основе методов возмущений: Дисс. … канд. физ.-мат. наук. М.: МГУ, 2023. 119 С.
- Kivelson D., Wilson Jr E.B. // J. Chem. Phys. 1952. V. 20. № 10. P. 1575. doi: 10.1063/1.1700219
- Kivelson D., Wilson Jr E.B. // Ibid. 1953. V. 21. № 7. P. 1229. doi: 10.1063/1.1699170
- Ramachandra Rao C.V.S. // J. Mol. Spectrosc. 1983. V. 102. № 1. P. 79. doi: 10.1016/0022-2852(83)90229-1
- Matthews D.A., Cheng L., Harding M.E. et al. // J. Chem. Phys. 2020. V. 152. № 21. P. 214108(1–35) doi: 10.1063/5.0004837
- Dunning Jr T.H., Peterson K.A., Wilson A.K. // Ibid. 2001. V. 114. № 21. P. 9244. doi: 10.1063/1.1367373
- Краснощеков С.В., Степанов Н.Ф. // Журн. физ. химии. 2008. Т. 82. № 4. С. 690.
- Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. // J. Phys. Chem. A. 2012. V. 116. № 14. P. 3691. doi: 10.1021/jp211400w
- Krasnoshchekov S.V., Stepanov N.F. // J. Chem. Phys. 2013. V. 139. № 18. P. 184101. doi: 10.1063/1.4829143
- Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. // Ibid. 2014. V. 141. № 23. P. 234114. doi: 10.1063/1.4903927
- Краснощеков С.В. ANCO – Единый пакет для расчета гармонических и ангармонических колебаний и колебательно-вращательных состояний и свойств полужестких молекул на основе гамильтониана Ватсона и численно-аналитической операторной теории возмущений. Программный код на языке Фортран-95. (С) 1986–2026.
- Краснощеков С.В. C4DRV – Файловый интерфейс для вычисления высших производных электронной энергии и дипольного момента молекул на основе пакета CFOUR (v2.1). Программный код на языке Фортран-95. (С) 2022.
- Lafferty W.J., Pine A.S., Flaud J.M. et al. // J. Mol. Spectrosc. 1993. V. 157. № 2. P. 499. doi: 10.1006/jmsp.1993.1039
- Краснощеков С.В. WATSON – аналитические преобразования операторов углового момента в различных представлениях, решение задачи редукции вращательных эффективных гамильтонианов. Программный код на языке Фортран-95. 2022.
- Perevalov V.I., Tyuterev V.G. // J. Mol. Spectrosc. 1982. V. 96. № 1. P. 56.
- Перевалов В.И., Тютерев Вл.Г. // Опт. Спектр. 1982. Т. 52. № 4. С. 644.
- Ulenikov O.N., Onopenko G.A., Gromova O.V. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 220. doi: 10.1016/j.jqsrt.2013.04.011
- Müller H.S.P., Brünken S. // J. Mol. Spectrosc. 2005. V. 232. № 2. P. 213. doi: 10.1016/j.jms.2005.04.010
- Flaud J.M., Perrin A., Salah L.M. et al. // Ibid. 1993. V. 160. № 1. P. 272. doi: 10.1006/jmsp.1993.1174
- Ulenikov O.N., Bekhtereva E.S., Gromova O.V. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 210. P. 141. doi: 10.1016/j.jqsrt.2018.02.010
- Ulenikov O.N., Bekhtereva E.S., Krivchikova Y.V. et al. // Ibid. 2015. V. 166. P. 13. doi: 10.1016/j.jqsrt.2015.07.004
- Gueye F., Manceron L., Perrin A. et al. // Mol. Phys. 2016. V. 114. № 19. P. 2769. doi: 10.1080/00268976.2016.1154619
- Margulès L., Motiyenko R.A., Demaison J. // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107153. doi: 10.1016/j.jqsrt.2020.107153
- Dinu D.F., Tschöpe M., Schröder B. et al. // J. Chem. Phys. 2022. V. 157. № 15. P. 154107(1–14). doi: 10.1063/5.0116018
Supplementary files
