Heat capacity of magnesium-neodymium hexaaluminate NdMgAl₁₁O₁₉
- Авторлар: Gagarin P.G.1, Guskov A.V.1, Guskov V.N.1, Ryumin M.A.1, Nikiforova G.E.1, Gavrichev K.S.1
-
Мекемелер:
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Шығарылым: Том 99, № 3 (2025)
- Беттер: 384–391
- Бөлім: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- ##submission.dateSubmitted##: 03.06.2025
- ##submission.datePublished##: 29.05.2025
- URL: https://permmedjournal.ru/0044-4537/article/view/682011
- DOI: https://doi.org/10.31857/S0044453725030028
- EDN: https://elibrary.ru/EBKXGW
- ID: 682011
Дәйексөз келтіру
Аннотация
Heat capacity of magnesium-neodymium hexaaluminate NdMgAl11O19 with the magnetoplumbite structure is measured by relaxation, adiabatic, and differential scanning calorimetry in the temperature range 2-1850 K. Smoothing of the data is carried out after matching the temperature dependences of the heat capacity obtained by different methods. Thermodynamic functions (entropy and enthalpy change) are calculated, and the anomalous Schottky heat capacity in the low temperature region is estimated.
Негізгі сөздер
Толық мәтін

Авторлар туралы
P. Gagarin
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991
A. Guskov
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991
V. Guskov
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991
M. Ryumin
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991
G. Nikiforova
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991
K. Gavrichev
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991
Әдебиет тізімі
- Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
- Chen X., Sun Y., Hu J., et al. // J. Europ. Ceram. Soc. 2020. V. 40. P. 1424. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039
- Gadow R., Lischka M. // Surf. Coat. Tech. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
- Chen X., Gu L., Zou B., et al. // Surf. Coat. Tech. 2012. V. 206. P. 2265. doi: 10.1016/j.surfcoat.2011.09.076
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1460. https://doi.org/10.1134/S0036023623601861 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1462.]
- Min X., Fang M., Huang Z. et al. // Opt. Mat. 2014. V. 37. P. 110. http://dx.doi.org/10.1016/j.optmat.2014.05.008
- Wang Y.-H., Ouyang J.-H., Liu Z.-G. // J. Alloys Comp. 2009. V. 485. P. 734. doi: 10.1016/j.jallcom.2009.06.068
- Lu H., Wang C.-A., Zhang C., et al. // J. Europ. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
- Westrum E.F., Burriel R., Jr., Gruber J.B., et al. // J. Chem. Phys. 1989. V. 91. P. 4838. https://doi.org/10.1063/1.456722
- Tari A. The Specific Heat of Matter at Low Temperatures, Imperial College Press, 2003. 250 p.
- Gruber J.B., Justice B.H., Westrum E.F., Zandi B., Jr. // J. Chem. Thermodyn. 2002. V. 34. P. 457. doi: 10.1006/jcht.2001.0860
- Gruber J.B., Zandi B., Justice B.H., Westrum E.F., Jr. // J. Phys. and Chem. 2000. V. 61. P. 1189. https://doi.org/10.1021/j100726a052
- Bansal N.P., Zhu D. // Surf. Coat. Tech. 2008. V. 202. № 12. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
- Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2010. V. 42. P. 1107. doi: 10.1016/j.jct.2010.04.008
- Shi Q., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2011. V. 43. P. 1263. doi: 10.1016/j.jct.2011.03.018
- Ryumin M.A., Nikiforova G.E., Tyurin A.V., et al. // Inorgan. Mater. 2020. V. 56. № 1. P. 97. doi: 10.1134/S0020168520010148 [Рюмин М.А., Никифорова Г.Е., Тюринидр А.В. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. doi: 10.31857/S0002337X20010145]
- Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приб. техн. эксп. 1985. Т. 6. С. 195.
- Furukawa G.T., McCoskey R.E., King G.J. // J. Res. Natl. Bur. Stand. 1951. V. 18. № 4. P. 256.
- Ditmars D.A., Ishihara S., Chang S.S., et al. // J. Res. Natl. Bur. Stand. 1982. V.87. № 2. P. 159. doi: 10.6028/jres.087.012
- Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Rus. J. Inorg. Chem. 2023. V. 68. № 11. P. 1599. doi: 10.1134/S0036023623602064 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607. doi: 10.31857/S0044457X23601062]
- Prohaska T., Irrgeher J., Benefield J., et al. // Pure Appl. Chem. 2022. V. 94 (5). P. 573. https://doi.org/10.1515/pac-2019-0603
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- Восков А.Л. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1296. doi: 10.31857/S0044453722090308 [Voskov A.L. // Russ. J. Phys. Chem. 2022. V. 96. P. 1895. https://doi.org/10.1134/S0036024422090291]
- Popa K., Jutier F., Wastin F., Konings R.J.M. // J. Chem. Thermodyn. 2006. V. 38. P. 1306–1311. doi: 10.1016/j.jct.2006.02.006
- Maier C.G., Kelley K.K.// J. Am. Chem. Soc. 1932. V 54. P. 3243–3246. doi: 10.1021/ja01347a029
- Kowalski P.M., Beridze G., Vinograd V.L., Bosbach D. // J. Nucl. Mater. 2015. V. 464. P. 147. https://doi.org/10.1016/j.jnucmat.2015.04.032
- Thiriet C., Konings R.J.M., Javorsky P., et al. // J. Chem. Thermodyn. 2005. V. 37. P. 131. doi: 10.1016/j.jct.2004.07.031
Қосымша файлдар
