Heat capacity of magnesium-neodymium hexaaluminate NdMgAl₁₁O₁₉

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Heat capacity of magnesium-neodymium hexaaluminate NdMgAl11O19 with the magnetoplumbite structure is measured by relaxation, adiabatic, and differential scanning calorimetry in the temperature range 2-1850 K. Smoothing of the data is carried out after matching the temperature dependences of the heat capacity obtained by different methods. Thermodynamic functions (entropy and enthalpy change) are calculated, and the anomalous Schottky heat capacity in the low temperature region is estimated.

全文:

受限制的访问

作者简介

P. Gagarin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gagarin@igic.ras.ru
俄罗斯联邦, Moscow, 119991

A. Guskov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
俄罗斯联邦, Moscow, 119991

V. Guskov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
俄罗斯联邦, Moscow, 119991

M. Ryumin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
俄罗斯联邦, Moscow, 119991

G. Nikiforova

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
俄罗斯联邦, Moscow, 119991

K. Gavrichev

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Chen X., Sun Y., Hu J., et al. // J. Europ. Ceram. Soc. 2020. V. 40. P. 1424. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039
  3. Gadow R., Lischka M. // Surf. Coat. Tech. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  4. Chen X., Gu L., Zou B., et al. // Surf. Coat. Tech. 2012. V. 206. P. 2265. doi: 10.1016/j.surfcoat.2011.09.076
  5. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1460. https://doi.org/10.1134/S0036023623601861 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1462.]
  6. Min X., Fang M., Huang Z. et al. // Opt. Mat. 2014. V. 37. P. 110. http://dx.doi.org/10.1016/j.optmat.2014.05.008
  7. Wang Y.-H., Ouyang J.-H., Liu Z.-G. // J. Alloys Comp. 2009. V. 485. P. 734. doi: 10.1016/j.jallcom.2009.06.068
  8. Lu H., Wang C.-A., Zhang C., et al. // J. Europ. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  9. Westrum E.F., Burriel R., Jr., Gruber J.B., et al. // J. Chem. Phys. 1989. V. 91. P. 4838. https://doi.org/10.1063/1.456722
  10. Tari A. The Specific Heat of Matter at Low Temperatures, Imperial College Press, 2003. 250 p.
  11. Gruber J.B., Justice B.H., Westrum E.F., Zandi B., Jr. // J. Chem. Thermodyn. 2002. V. 34. P. 457. doi: 10.1006/jcht.2001.0860
  12. Gruber J.B., Zandi B., Justice B.H., Westrum E.F., Jr. // J. Phys. and Chem. 2000. V. 61. P. 1189. https://doi.org/10.1021/j100726a052
  13. Bansal N.P., Zhu D. // Surf. Coat. Tech. 2008. V. 202. № 12. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  14. Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2010. V. 42. P. 1107. doi: 10.1016/j.jct.2010.04.008
  15. Shi Q., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2011. V. 43. P. 1263. doi: 10.1016/j.jct.2011.03.018
  16. Ryumin M.A., Nikiforova G.E., Tyurin A.V., et al. // Inorgan. Mater. 2020. V. 56. № 1. P. 97. doi: 10.1134/S0020168520010148 [Рюмин М.А., Никифорова Г.Е., Тюринидр А.В. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. doi: 10.31857/S0002337X20010145]
  17. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приб. техн. эксп. 1985. Т. 6. С. 195.
  18. Furukawa G.T., McCoskey R.E., King G.J. // J. Res. Natl. Bur. Stand. 1951. V. 18. № 4. P. 256.
  19. Ditmars D.A., Ishihara S., Chang S.S., et al. // J. Res. Natl. Bur. Stand. 1982. V.87. № 2. P. 159. doi: 10.6028/jres.087.012
  20. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Rus. J. Inorg. Chem. 2023. V. 68. № 11. P. 1599. doi: 10.1134/S0036023623602064 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607. doi: 10.31857/S0044457X23601062]
  21. Prohaska T., Irrgeher J., Benefield J., et al. // Pure Appl. Chem. 2022. V. 94 (5). P. 573. https://doi.org/10.1515/pac-2019-0603
  22. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  23. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  24. Восков А.Л. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1296. doi: 10.31857/S0044453722090308 [Voskov A.L. // Russ. J. Phys. Chem. 2022. V. 96. P. 1895. https://doi.org/10.1134/S0036024422090291]
  25. Popa K., Jutier F., Wastin F., Konings R.J.M. // J. Chem. Thermodyn. 2006. V. 38. P. 1306–1311. doi: 10.1016/j.jct.2006.02.006
  26. Maier C.G., Kelley K.K.// J. Am. Chem. Soc. 1932. V 54. P. 3243–3246. doi: 10.1021/ja01347a029
  27. Kowalski P.M., Beridze G., Vinograd V.L., Bosbach D. // J. Nucl. Mater. 2015. V. 464. P. 147. https://doi.org/10.1016/j.jnucmat.2015.04.032
  28. Thiriet C., Konings R.J.M., Javorsky P., et al. // J. Chem. Thermodyn. 2005. V. 37. P. 131. doi: 10.1016/j.jct.2004.07.031

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffraction pattern of neodymium magnesium hexaaluminate powder after annealing at 1700°C.

下载 (100KB)
3. Fig. 2. Type of temperature dependence of the heat capacity of NdMgAl₁₁O₁₉: ■ – relaxation calorimetry, ○ – adiabatic calorimetry, ▲ – differential scanning calorimetry.

下载 (113KB)
4. Fig. 3. Relative deviations of experimental values ​​of heat capacity of NdMgAl₁₁O₁₉ from smoothed values: ■ – relaxation calorimetry, ○ – adiabatic calorimetry, ▲ – differential scanning calorimetry.

下载 (60KB)
5. Fig. 4. Anomalous heat capacity of NdMgAl₁₁O₁₉: 1 – difference between the heat capacities of NdMgAl₁₁O₁₉ and LaMgAl11O19, 2 – excess heat capacity calculated for the energy levels of 71 cm⁻¹ and 250 cm⁻¹; vertical dashes show the 1% error corridor (a) and the anomalous heat capacity of NdMgAl₁₁O₁₉ in the temperature range of 2–20 K, calculated using equation (5) (b).

下载 (142KB)

版权所有 © Russian Academy of Sciences, 2025