Heat capacity of magnesium-neodymium hexaaluminate NdMgAl₁₁O₁₉

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heat capacity of magnesium-neodymium hexaaluminate NdMgAl11O19 with the magnetoplumbite structure is measured by relaxation, adiabatic, and differential scanning calorimetry in the temperature range 2-1850 K. Smoothing of the data is carried out after matching the temperature dependences of the heat capacity obtained by different methods. Thermodynamic functions (entropy and enthalpy change) are calculated, and the anomalous Schottky heat capacity in the low temperature region is estimated.

Full Text

Restricted Access

About the authors

P. G. Gagarin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: gagarin@igic.ras.ru
Russian Federation, Moscow, 119991

A. V. Guskov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Russian Federation, Moscow, 119991

V. N. Guskov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Russian Federation, Moscow, 119991

M. A. Ryumin

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Russian Federation, Moscow, 119991

G. E. Nikiforova

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Russian Federation, Moscow, 119991

K. S. Gavrichev

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Chen X., Sun Y., Hu J., et al. // J. Europ. Ceram. Soc. 2020. V. 40. P. 1424. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039
  3. Gadow R., Lischka M. // Surf. Coat. Tech. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  4. Chen X., Gu L., Zou B., et al. // Surf. Coat. Tech. 2012. V. 206. P. 2265. doi: 10.1016/j.surfcoat.2011.09.076
  5. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1460. https://doi.org/10.1134/S0036023623601861 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1462.]
  6. Min X., Fang M., Huang Z. et al. // Opt. Mat. 2014. V. 37. P. 110. http://dx.doi.org/10.1016/j.optmat.2014.05.008
  7. Wang Y.-H., Ouyang J.-H., Liu Z.-G. // J. Alloys Comp. 2009. V. 485. P. 734. doi: 10.1016/j.jallcom.2009.06.068
  8. Lu H., Wang C.-A., Zhang C., et al. // J. Europ. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  9. Westrum E.F., Burriel R., Jr., Gruber J.B., et al. // J. Chem. Phys. 1989. V. 91. P. 4838. https://doi.org/10.1063/1.456722
  10. Tari A. The Specific Heat of Matter at Low Temperatures, Imperial College Press, 2003. 250 p.
  11. Gruber J.B., Justice B.H., Westrum E.F., Zandi B., Jr. // J. Chem. Thermodyn. 2002. V. 34. P. 457. doi: 10.1006/jcht.2001.0860
  12. Gruber J.B., Zandi B., Justice B.H., Westrum E.F., Jr. // J. Phys. and Chem. 2000. V. 61. P. 1189. https://doi.org/10.1021/j100726a052
  13. Bansal N.P., Zhu D. // Surf. Coat. Tech. 2008. V. 202. № 12. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  14. Shi Q., Snow C.L., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2010. V. 42. P. 1107. doi: 10.1016/j.jct.2010.04.008
  15. Shi Q., Boerio-Goates J., Woodfield B.F. // J. Chem. Thermodyn. 2011. V. 43. P. 1263. doi: 10.1016/j.jct.2011.03.018
  16. Ryumin M.A., Nikiforova G.E., Tyurin A.V., et al. // Inorgan. Mater. 2020. V. 56. № 1. P. 97. doi: 10.1134/S0020168520010148 [Рюмин М.А., Никифорова Г.Е., Тюринидр А.В. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. doi: 10.31857/S0002337X20010145]
  17. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приб. техн. эксп. 1985. Т. 6. С. 195.
  18. Furukawa G.T., McCoskey R.E., King G.J. // J. Res. Natl. Bur. Stand. 1951. V. 18. № 4. P. 256.
  19. Ditmars D.A., Ishihara S., Chang S.S., et al. // J. Res. Natl. Bur. Stand. 1982. V.87. № 2. P. 159. doi: 10.6028/jres.087.012
  20. Gagarin P.G., Guskov A.V., Guskov V.N. et al. // Rus. J. Inorg. Chem. 2023. V. 68. № 11. P. 1599. doi: 10.1134/S0036023623602064 [Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607. doi: 10.31857/S0044457X23601062]
  21. Prohaska T., Irrgeher J., Benefield J., et al. // Pure Appl. Chem. 2022. V. 94 (5). P. 573. https://doi.org/10.1515/pac-2019-0603
  22. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  23. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  24. Восков А.Л. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1296. doi: 10.31857/S0044453722090308 [Voskov A.L. // Russ. J. Phys. Chem. 2022. V. 96. P. 1895. https://doi.org/10.1134/S0036024422090291]
  25. Popa K., Jutier F., Wastin F., Konings R.J.M. // J. Chem. Thermodyn. 2006. V. 38. P. 1306–1311. doi: 10.1016/j.jct.2006.02.006
  26. Maier C.G., Kelley K.K.// J. Am. Chem. Soc. 1932. V 54. P. 3243–3246. doi: 10.1021/ja01347a029
  27. Kowalski P.M., Beridze G., Vinograd V.L., Bosbach D. // J. Nucl. Mater. 2015. V. 464. P. 147. https://doi.org/10.1016/j.jnucmat.2015.04.032
  28. Thiriet C., Konings R.J.M., Javorsky P., et al. // J. Chem. Thermodyn. 2005. V. 37. P. 131. doi: 10.1016/j.jct.2004.07.031

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern of neodymium magnesium hexaaluminate powder after annealing at 1700°C.

Download (100KB)
3. Fig. 2. Type of temperature dependence of the heat capacity of NdMgAl₁₁O₁₉: ■ – relaxation calorimetry, ○ – adiabatic calorimetry, ▲ – differential scanning calorimetry.

Download (113KB)
4. Fig. 3. Relative deviations of experimental values ​​of heat capacity of NdMgAl₁₁O₁₉ from smoothed values: ■ – relaxation calorimetry, ○ – adiabatic calorimetry, ▲ – differential scanning calorimetry.

Download (60KB)
5. Fig. 4. Anomalous heat capacity of NdMgAl₁₁O₁₉: 1 – difference between the heat capacities of NdMgAl₁₁O₁₉ and LaMgAl11O19, 2 – excess heat capacity calculated for the energy levels of 71 cm⁻¹ and 250 cm⁻¹; vertical dashes show the 1% error corridor (a) and the anomalous heat capacity of NdMgAl₁₁O₁₉ in the temperature range of 2–20 K, calculated using equation (5) (b).

Download (142KB)

Copyright (c) 2025 Russian Academy of Sciences