Electricity spot price dynamics comparison in the European and Siberian price zones of Russia using a stochastic volatility model
- 作者: Kasianova K.A.1
-
隶属关系:
- Russian Presidential Academy of National Economy and Public Administration
- 期: 卷 60, 编号 1 (2024)
- 页面: 85-96
- 栏目: Industrial problems
- URL: https://permmedjournal.ru/0424-7388/article/view/653314
- DOI: https://doi.org/10.31857/S0424738824010078
- ID: 653314
如何引用文章
详细
In the literature on forecasting electricity spot prices, it is noted that the empirical distribution of the growth rates of equilibrium prices for electricity is characterized by the presence of heavy ‘tails’, so they can be described as a jump-diffusion process. However, electricity prices are associated with a variety of observable factors that can be included in the model. Within the framework of this article, a flexible model, that allows taking into account statistical features of electricity prices (multilevel seasonality, stochastic volatility), as well as fundamental price factors that directly or indirectly affect equilibrium price indices (weather factors, resource prices, industrial production index, or IPI), was developed. Using methods of Bayesian inference, it was shown that the developed two-level specification of the stochastic volatility model, which separates the factors influencing the deterministic and stochastic components of the series, fits the data best, among the considered alternatives. As a result, differences in the price dynamics between the European and Siberian price zones were revealed: the influence of the weather factor in the price zones is not the same; there are also differences in the weekly price dynamics and the effect of holidays. The effect of low-frequency economic factors (resource prices, IPI) on prices was not revealed. This model is a useful tool for analyzing short-term and long-term electricity price dynamics, building scenario forecasts, and it also can potentially be used in risk-management and electricity derivatives pricing.
全文:

作者简介
K. Kasianova
Russian Presidential Academy of National Economy and Public Administration
编辑信件的主要联系方式.
Email: kasyanova-ka@ranepa.ru
俄罗斯联邦, Moscow
参考
- Калашникова С., Ермишина А. (2009). Влияние энерготарифов естественных монополий на социально-значимые отрасли России // Terra Economicus. T. 7 (1–2). С. 13–20. [Kalashnikova S., Ermishina A. (2009). Influence of natural monopolies energy tariffs on socially important industries in Russia. Terra Economicus, 7 (1–2), 13–20 (in Russian).]
- Лясковская Е. А., Курбангалиев М. Р. (2014). К вопросу реформирования электроэнергетики РФ // Экономика, управление и инвестиции. Т. 1. № 3. С. 108–115. [Lyaskovskaya E. A., Kurbangaliev M. R. (2014). On the issue of reforming the Russian electric power industry. Economics, Management and Investments, 1, 3, 108–115 (in Russian).]
- Рыбина И., Макаров О. (2016). Основные аспекты стратегии развития электроэнергетической отрасли до 2035 года. В сб.: «Взаимодействие науки и бизнеса». С. 78–84. [Rybina I., Makarov O. (2016). The main aspects of the strategy for the development of the electric power industry until 2035. In: Science and Business Interaction, 78–84 (in Russian).]
- Соловьева И. А., Дзюба А. П. (2013). Прогнозирование электропотребления с учетом факторов технологической и рыночной среды // Научный диалог. № 7 (19). С. 97–113. [Solovieva I. A., Dziuba A. P. (2013). Forecasting of power consumption taking into account the factors of the technological and market environment. Scientific Dialogue, 7 (19), 97–113 (in Russian).]
- Старкова Н. О., Зубко Д. В. (2016). Основные проблемы развития и инвестирования российской электроэнергетики // Бюллетень науки и практики. Т. 11. № 12. С. 170–176. [Starkova N. O., Zubko D. V. (2016). The main problems of development and investment of the Russian electric power industry. Bulletin of Science and Practice, 11 (12), 170–176 (in Russian).]
- Трачук А.В., Линдер Н.В., Зубакин В.А., Золотова И.Ю., Володин Ю.В. (2017). Перекрестное субсидирование в электроэнергетике: проблемы и пути решения // Стратегические решения и риск-менеджмент. № 1–2. С. 24– 35. [Trachuk A. V., Linder N. V., Zubakin V. A., Zolotova I. Yu., Volodin Yu.V. (2017). Cross-subsidization in the electric power industry: Problems and solutions. Strategic Decisions and Risk Management, 1–2, 24–35 (in Russian).]
- Andersson M., Bjork C., Karlsson B. (1993). Cost-effective energy system measures studied by dynamic modelling. 2nd International Conference on Advances in Power System Control, Operation and Management. Hong Kong: APSCOM-93, 448–455.
- Bosco B., Parisio L., Pelagatti M., Baldi F. (2010). Long-run relations in European electricity prices. Journal of Applied Econometrics, 25 (5), 805–832.
- Cartea A., Figueroa M. G. (2005). Pricing in electricity markets: A mean reverting jump diffusion model with seasonality. Applied Mathematical Finance, 12 (4), 313–335.
- Canova F., Hansen B. E. (1995). Are seasonal patterns constant over time? A test for seasonal stability. Journal of Business & Economic Statistics, 13 (3), 237–252.
- Escribano A., Ignacio Peña J., Villaplana P. (2011). Modelling electricity prices: International evidence. Oxford Bulletin of Economics and Statistics, 73 (5), 622–650.
- Gao F., Sheble G. (2010). Electricity market equilibrium model with resource constraint and transmission congestion. Electric Power Systems Research, 80 (1), 9–18.
- Huisman R., Mahieu R. (2003). Regime jumps in electricity prices. Energy Economics, 25 (5), 425–434.
- Keles D., Scelle J., Paraschiv F., Fichtner W. (2016). Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Applied Energy, 162, 218–230.
- Kostrzewski M., Kostrzewska J. (2019). Probabilistic electricity price forecasting with Bayesian stochastic volatility models. Energy Economics, 80, 610–620.
- Krause T., Andersson G. (2006). Evaluating congestion management schemes in liberalized electricity markets using an agent-based simulator. IEEE Power Engineering Society General Meeting, Montreal: IEEE, 1–8.
- Kuznetsova E., Li Y.-F., Ruiz C., Zio E. (2014). An integrated framework of agent-based modelling and robust optimization for microgrid energy management. Applied Energy, 129, 70–88.
- Lucia J. J., Schwartz E. S. (2002). Electricity prices and power derivatives: Evidence from the Nordic power exchange. Review of Derivatives Research, 5 (1), 5–50.
- Meyer-Brandis T., Tankov P. (2008). Multi-factor jump-diffusion models of electricity prices. International Journal of Theoretical and Applied Finance, 11 (5), 503–528.
- Monnahan C. C., Kristensen K. (2018). No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages. PloS One, 13 (5), e0197954.
- Vats D., Knudson C. (2021). Revisiting the Gelman–Rubin diagnostic. Statistical Science, 36 (4), 518–529.
- Weron R. (2009). Heavy-tails and regime-switching in electricity prices. Mathematical Methods of Operations Research, 69 (3), 457–473.
