Development of a Therapeutic Agent Based on Escherichia coli, Assessment of Harmlessness and Anti-Radiation Activity

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the development, assessment of the safety and antiradiation activity of a therapeutic agent based on the culture of Escherichia coli strains “PL-6” and “KV-1”. To obtain the antiradiation agent, the causative agent of colibacillosis was grown in meat-peptone broth in a thermostat at a temperature of 37°C for 3 days. The grown suspension was centrifuged at 3000 rpm for 50 min, the supernatant was decanted. The sediment was brought to 1 billion cm3 with distilled water. Smears were prepared from the grown cultures and stained according to Gram to determine the purity and species of the grown culture. The prepared suspension was poured into sterile vials of 10, 50 or 100 cm3, sealed with rubber stoppers and rolled with aluminum caps, labeling with an indication of the strain, radiation dose and date. Irradiation of the microbial material was carried out on the γ-installation “Issledovatel”, source 60Co, absorbed dose rate of 1.028 Gy/sec, in the ranges of absorbed doses from 7.5 to 30.0 kGy with interdose intervals of 2.5 and 5.0 kGy. The degree of inactivation of γ-irradiated E. coli cultures was determined by seeding them on meat-peptone agar and thermostatting for 168 hours, recording the presence or absence of microorganism growth. The studies have established that the timing and degree of growth of irradiated E. coli cultures of the “PL-6” and “KV-1” strains are directly dependent on the radiation dose, their complete inactivation occurs with irradiation at a dose of 25.0 kGy. Further studies have shown that the developed biopreparation obtained on the basis of E. coli is sterile, areactogenic, non-toxic and harmless. The mechanism of formation of radioresistance of the organism against the background of application of antiradiation agents based on E. coli strains “PL-6” and “KV-1” consisted in restoration of hematological, biochemical and immune parameters, which contributed to preservation of 66.7 to 83.3٪ of lethally irradiated animals.

全文:

受限制的访问

作者简介

Timur Gaynutdinov

Federal State Budgetary Scientific Institution “Federal Center for Toxicological, Radiation and Biological Safety”; Kazan Federal University

编辑信件的主要联系方式.
Email: gtr_timur@mail.ru
ORCID iD: 0000-0003-3832-883X

PhD. Biol. nauk, ved. nauk. sotr., art. scientific. sotr.

俄罗斯联邦, Kazan; Kazan

Konstantin Vagin

Federal State Budgetary Scientific Institution “Federal Center for Toxicological, Radiation and Biological Safety”; Kazan Federal University

Email: kostya9938@yandex.ru
ORCID iD: 0000-0003-4396-614X

Doctor of Biological Sciences, Head of the Laboratory, Ved. sci., art. scientific. sotr.

俄罗斯联邦, Kazan; Kazan

参考

  1. Гайнутдинов Т.Р., Вагин К.Н., Рыжкин С.А. Способ лечения радиационно-термических ожогов. Радиация и риск. 2023;32(1):108–117. [Gaynutdinov T.R., Vagin K.N., Ryzhkin S.A. Method of treatment of radiation-thermal burns. Radiation and risk. 2023;32(1):108–117 (In Russ.)] http://doi.org/10.21870/0131-3878-2023-32-1-108-117
  2. Islam M.T. Radiation interactions with biological systems. Int. J. Radiat. Biol. 2017;93(5):487–493. http://doi.org/10.1080/09553002.2017.1286050
  3. Воронцова З.А., Зюзина В.В. Иммунные эффекты на воздействие малыx доз — облучения в эксперименте. Материалы конференции. Фундаментальные и прикладные исследования в медицине. Франция, Париж, 15–22 октября 2011 г. 2011;11:80–81. [Vorontsova Z.A., Zyuzina V.V. Immune effects on the effect of small doses of radiation in an experiment. Conference proceedings. Fundamental and applied research in medicine. France, Paris, October 15–22, 2011. 2011;11:80–81 (In Russ.)]
  4. Аклеев А.А. Иммунный статус человека в отдаленном периоде хронического радиационного воздействия. Мед. радиология и радиац. безопасность. 2020;65(4);29–35. [Akleev A.A. Human immune status in the long-term period of chronic radiation exposure. Medical Radiology and Radiation Safety. 2020;65(4):29–35. (In Russ.)]. http://doi.org/10.12737/1024-6177-2020-65-4-29-35
  5. Tоlstуkh Е.I., Dеgtеvа M.О., Pеrеmуslоvа L.M. et al. Rесоnstruсtiоn оf lоng-livеd rаdiоnuсlidе intаkеs fоr Tесhа rivеrsidе rеsidеnts 137Сs. Hеаlth Phуs. 2013;104(5):481–498. http://doi.org/10.1097/HP.0b013e318285bb7a
  6. Слюсарева О.А, Воронцова З.А. Доза–эффекты однократного облучения и состояние гомеостаза слизистой оболочки тощей кишки в динамике пролонгированности сроков наблюдения. Вестн. новыx мед. теxнологий. 2010;17(2):39–41. [Slyusareva O.A., Vorontsova Z.A. Dose–effects of single–dose irradiation and the state of homeostasis of the jejunum mucosa in the dynamics of prolonged follow-up periods. Bull. New Med. Technols. 2010;17(2):39–41. (In Russ.)]
  7. Засуxина Г.Д. Адаптивный ответ — общебиологическая закономерность: факты, гипотезы, вопросы. Pадиац. биология. Pадиоэкология. 2008;48(4):464–473. [Zasukhina G.D. Adaptive Response — the General Biological Tendency: Facts, Hipothesis, Questions. Radiation Biology. Radioecology. 2008;48(4):464–473 (In Russ.)]
  8. Ингель Ф.И. Перспективы использования микроядерного теста на лимфоцитаx крови человека, культивируемыx в условияx цитокинетического блока. Часть 1. Пролиферация клеток. Экол. генетика. 2006; 4(3):7–19. [Ingel F.I. Perspectives of micronuclear test in human lymphocytes cultivated in cytogenetic block conditions. Part 1: cell proliferation. Ecological genetics. 2006;4(3):7–19. (In Russ.)].
  9. Kuruba V., Gollapalli, P. Natural radioprotectors and their impact on cancer drug discovery. Radia. Oncol. J. 2018;36(4):265–275. http://doi.org/10.3857/roj.2018.00381
  10. Smith T.A., Kirkpatrick D.R., Smith S. et al. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Translat. Med. 2017;15(1):232. http://doi.org/10.1186/s12967-017-1338-x.
  11. Gaynutdinov T.R., Vagin K.N., Nizamov R.N. et al. Radioprotective activity of gamma-irradiated St. aureus variants. Linguistica Antverpiensia. 2021;2:1176–1193.
  12. Bin Qiu, Abudureyimujiang Aili, Lixiang Xue, et al. Advances in Radiobiology of Stereotactic Ablative Radiotherapy. Front. Oncol. 2020;10:1165. http://doi.org/10.3389/fonc.2020.01165
  13. Leblanc J., Burtt J.. Radiation Biolody and lts Role in the Canadian Radiation Protection Framework. Health Physics. 2019;3(117):319–329. http://doi.org/10.1097/HP.0000000000001060
  14. Smolen J.S., Aletaha D., Redlich K. The pathogenesis of rheumatoid arthritis: new insights from old clinical data? Nature Rev. Rheumatol. 2012;8:235–243. http://doi.org/10.1038/nrrheum.2012.23
  15. Yarilina, A. Kai Xu, Chunhin Chan, Lionel B Ivashkiv. Regulation of inflammatory responses in tumor necrosis factor-activated and rheumatoid arthritis synovial macrophages by JAk inhibitors. Arthritis Rheum. 2012;64(12):3856–3866. http://doi.org/10.1002/art.37691
  16. Гайнутдинов Т.Р. Оценка противорадиационной эффективности препаратов, полученных на основе веществ микробного происхождения. Вет. врач. 2024;1:52–57. [Gaynutdinov T.R. Evaluation of the anti-radiation effectiveness of drugs derived from substances of microbial origin. Veterinarian. 2024;1:52–57. (In Russ.)]. http://doi.org/10.33632/1998-698X_2024_1_52
  17. Симбирцев А.С., Кетлинский С.А. Перспективы использования цитокинов и индукторов синтеза цитокинов в качестве радиозащитных препаратов. Радиац. биология. Радиоэкология. 2019;59(2)6:170–176. [Simbirtsev A.S., Ketlinsky S.A. Prospects for the use of cytokines and cytokine synthesis inducers as radioprotective drugs. Radiation Biology. Radioecology. 2019;59(2):170–176. (In Russ.)]. http://doi.org/10.1134/S0869803119020164
  18. Vagin K.N., Gaynutdinov T.R., Nizamov R.N. et al. Obtaining and application of a radioprotective preparation of microbial origin. Linguistica Antverpiensia. 2021;2:1156–1175.
  19. ГОСТ 28085-2013. Средства лекарственные биологические для ветеринарного применения. Методы бактериологического контроля стерильности: межгосударственный стандарт Российской Федерации: издание официальное. Принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 марта 2013 г. № 55-П): введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 28 июня 2013 г. № 319-ст: введен взамен ГОСТ 28085-89: дата введения 2014-07-01 / разработан Федеральным государственным бюджетным учреждением “Всероссийский государственный Центр качества и стандартизации лекарственных средств и кормов” (ФГБУ “ВГНКИ”). Техэксперт: офиц. сайт. — URL: http://docs.cntd.ru/document/1200104835 (дата обращения: 30.09.2022). [GOST 28085-2013. Biological medicinal products for veterinary use. Methods of bacteriological sterility control: Interstate Standard of the Russian Federation: official publication: adopted by the Interstate Council for Standardization, Metrology and Certification (Protocol No. 55-P of March 25, 2013): put into effect by order of the Federal Agency for Technical Regulation and Metrology of June 28, 2013. No. 319-st: introduced instead of GOST 28085-89: date of introduction 2014-07-01 / developed by the Federal State Budgetary Institution “All-Russian State Center for Quality and Standardization of Medicines and Feed” (FGBI “VGNKI”). Techexpert: ofic. website. — URL: http://docs.cntd.ru/document/1200104835 (accessed: 30.09.2022). (In Russ.)]
  20. ГОСТ 31926-2013. Средства лекарственные для ветеринарного применения. Методы определения безвредности: межгосударственный стандарт Российской Федерации: издание официальное: принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол 7 мая 2013 г. № 43): введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 27 июня 2013 г. № 243-ст: введен впервые: дата введения 2014-07-01 / подготовлен Федеральным государственным бюджетным учреждением “Всероссийский государственный центр качества и стандартизации лекарственных средств и кормов” (ФГБУ “ВГНКИ”). Техэксперт: офиц. сайт. — URL: https://docs.cntd.ru/document/1200103451 (дата обращения: 30.09.2022). [GOST 31926-2013. Medicinal products for veterinary use. Methods for determining harmlessness: Interstate Standard of the Russian Federation: official publication: adopted by the Interstate Council for Standardization, Metrology and Certification (Protocol No. 43 of May 07, 2013): put into effect by order of the Federal Agency for Technical Regulation and Metrology of June 27, 2013. No. 243-st: introduced for the first time: date of introduction 2014-07-01 / prepared by the Federal State Budgetary Institution “All-Russian State Center for Quality and Standardization of Medicines and Feed” (FGBI “VGNKI”). Techexpert: ofic. website. — URL: https://docs.cntd.ru/document/1200103451 (accessed: 30.09.2022). (In Russ.)]
  21. Авилов В.М., Равилов А.З., Киршин В.А. и др. Патент № 2169572 C2 Российская Федерация, МПК А61К 35/28, 35/78. Способ лечения радиационных поражений организма и способ получения препарата для лечения радиационных поражений организма. № 97113199/14, заявл. 31.07.1997, опубл. 27.06.2001. 7 c. [Avilov V.M., Ravilov A.Z., Kirshin V.A. et al. Patent No. 2169572 C2 Russian Federation, IPC A61K 35/28, 35/78. A method for the treatment of radiation damage to the body and a method for obtaining a drug for the treatment of radiation damage to the body. No 97113199/14, declared on 31.07.1997, publ. 27.06.2001. 7 p. (In Russ)]
  22. Фримель Г. Иммунологические методы / Под ред. Г. Фримеля; Перевод с немецкого А.П. Тарасова. М.: Медицина, 1987. 472 с. [Frimel G. Immunological methods / Ed. G. Frimel; Translated from the German by A.P. Tarasov. M.: Publishing House of Medicine. 1987. 472 p. (In Russ.)]
  23. Гончаренко М.С., Латинова А.М. Метод перекисного окисления липидов. Лаб. дело. 1985;1:60–61. [Goncharenko M.S., Latinova A.M. Method of lipid peroxidation. Laboratory business. 1985;1:60–61. (In Russ.)]
  24. Гурьянова В.А., Трошин Е.И. Изучение уровня перекисного окисления липидов (ПОЛ) в тканях крыс при облучении: Материалы республиканской научно-производственной конференции: “Актуальность проблемы ветеринарии и зоотехнии”. Казань, 1996. С. 97. [Guryanova V.A., Troshin E.I. Studying the level of lipid peroxidation (POL) in rat tissues under irradiation: Materials of the Republican scientific and industrial conference: “Relevance of the problem of veterinary medicine and animal science”. Kazan, 1996. P. 97. (In Russ.)]
  25. Гайнутдинов Т.Р., Идрисов А.М., Фролов А.В. и др. Определение радиозащитной эффективности инактивированных γ-облучением штаммов микроорганизмов. Вет. врач. 2022;2:13–20. [Gaynutdinov T.R., Idrisov A.M., Frolov A.V. et al. Determination of the radioprotective effectiveness of inactivated gamma-irradiated strains of microorganisms. Veterinarian. 2022;2:13–20. (In Russ.)]. http://doi.org/10.33632/1998-698X.2022_13_20
  26. Reisz J.A., Bansal N., Qian J. et al. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxidants & Redox Signaling. 2014;21(2):260–292. http://doi.org/10.1089/ars.2013.5489
  27. Raviraj J., Bokkasam V.K., Kumar V.S., Reddy U.S., Suman V. Radiosensitizers, radioprotectors, and radiation mitigators. Ind. J. Dental Res.. 2014;25(1): 83–90. http://doi.org/10.4103/0970-9290.131142
  28. Kumar Raj, Singh Shravan Kumar. Exploitation of microbial resources for radioprotector development: current status at Institute of Nuclear Medicine and Allied Sciences. J. Radiat. Cancer Res. 2016;7(1):38.
  29. Wang, W., Xue C., Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int. J. Biol. Macromol. 2020;153:373–384. http://doi.org/10.1016/j.ijbiomac.2020.02.203
  30. Shuryak I., Matrosova V.Y., Gaidamakova E.K. et al. Microbial cells can cooperate to resist high-level chronic ionizing radiation. PloS One. 2017;12(12):e0189261. http://doi.org/10.1371/journal.pone.0189261

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024