Formation of coatings from accelerated ions of fluorinated fullerene C60(CF3)12

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first results of the deposition of coatings from accelerated ions of fluorinated fullerene C60(CF3)12 are presented. The coatings were formed at room temperature on Si substrates from a beam of singly charged C60(CF3)+12 ions with an energy of 5 keV, as well as from an ion beam, which also contained doubly charged C60(CF3)122+ ions and a certain amount of ionized fragments of molecules. The properties and structure of coatings obtained from accelerated ions of fluorinated fullerene are compared with the properties and structure of coatings obtained from accelerated C60 fullerene ions under the same conditions. According to X-ray photoelectron spectroscopy, fluorinated fullerene coatings contain about 4% fluorine. Investigations of the coatings structure and chemical bonds by X-ray photoelectron spectroscopy and Raman scattering showed that the presence of fluorine leads to decrease in the content of sp3 bonds and the formation of graphite-like sp2 structures. Coating hardness (H) and Young's modulus (E) compared to C60 ion coatings decrease from 36 to 18 GPa and from 245 to 133 GPa, respectively. The H/E ratio remained the same (~0.14). Tribological tests have shown for all coatings a friction coefficient close to 0.1. Also, all coatings are characterized by very low wear, less than 10–7 mm3/N∙m for coatings obtained from C60(CF3)12 ions, the contact angle is ~76°–78°. In the absence of fluorine, for the coating obtained from C60 ions, it is ~90°.

About the authors

V. E. Pukha

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Hydrogen Energy Center, Ltd. (Sistema JFC PJSC)

Author for correspondence.
Email: pve@icp.ac.ru
Russian Federation, Chernogolovka; Chernogolovka

A. A. Belmesov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: pve@icp.ac.ru
Russian Federation, Chernogolovka

E. N. Kabachkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; Institute of Solid State Physics of the RAS

Email: pve@icp.ac.ru
Russian Federation, Chernogolovka; Chernogolovka

G. V. Nechaev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: pve@icp.ac.ru
Russian Federation, Chernogolovka

I. N. Lukina

Baikov Institute of Metallurgy and Materials Science of the RAS

Email: pve@icp.ac.ru
Russian Federation, Moscow

E. I. Drozdova

Baikov Institute of Metallurgy and Materials Science of the RAS

Email: pve@icp.ac.ru
Russian Federation, Moscow

O. P. Chernogorova

Baikov Institute of Metallurgy and Materials Science of the RAS

Email: pve@icp.ac.ru
Russian Federation, Moscow

References

  1. Rajak D.K., Kumar A., Behera A., Menezes, P.L. // Appl. Sci. 2021. V. 11 (10). P. 4445. https://doi.org/10.3390/app11104445
  2. Schultrich B. Tetrahedrally Bonded Amorphous Carbon Films I: Basics, Structure and Preparation. Springer, 2018. P. 263.
  3. Bewilogua K., Bräuer G., Dietz A., Gäbler J., Goch G., Karpuschewski B., Szyszka B. // CIRP Annals. 2009. V. 58. Iss. 2. P. 608. https://doi.org/10.1016/j.cirp.2009.09.001
  4. Narayan R. Diamond-based materials for biomedical applications. Elsevier, 2013.
  5. Malisz K., Świeczko-Żurek B., Sionkowska A. // Mate-rials. 2023. V. 16 (9). P. 3420. https://doi.org/10.3390/ma16093420
  6. Santiago J.A., Fernández-Martínez I., Sánchez-Ló-pez J.C., Rojas T.C., Wennberg A., Bellido-González V., Molina-Aldareguia J.M., Monclús M.A., González-Arrabal, R. // Surf. Coat. Technol. 2020. V. 382. P. 124899. https://doi.org/10.1016/j.surfcoat.2019.124899
  7. Zhang, S., Yan, M., Yang, Y., Zhang, Y., Yan, F., Li, H. // Carbon. 2019. V. 151. P. 136. https://doi.org/10.1016/j.carbon.2019.05.031
  8. He D., Shang L., Li W., Cheng B., Zhai H., Zhang, X., Lu Z. Zhang G. // Mater. Design. 2023. V. 226. P. 111640. https://doi.org/10.1016/j.matdes.2023.111640
  9. Belmesov A. A., Nechaev G. V., Pukha V. E., Kabach-kov E. N., Khodos I. I., Karaseov P. A. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021. V. 15 (Suppl 1), P. 112. https://doi.org/10.1134/S1027451022020240
  10. Penkov O., Kim H.J., Kim H.J., Kim D.E. // Int. J. Precision Engineer. Manufact. 2014. V. 15. P. 577. https://doi.org/10.1016/j.triboint.2012.11.011
  11. Pukha V.E., Zubarev E.N., Drozdov A.N., Puga-chov A.T., Jeong S.H., Nam S.C. // J. Phys. D: Appl. Phys. 2012. V. 45 (33). P. 335302. https://doi.org/10.1088/0022-3727/45/33/335302
  12. Pukha V.E., Karbovskii V.L., Rudchenko S.O., Drozdov A.N., Maleyev M.V., Starikov V.V., Pugachov A.T. // Mater. Res. Exp. 2014. V. 1 (3). P. 035049. https://doi.org/10.1088/2053-1591/1/3/035049
  13. Pukha V.E., Karbovskii V.L., Drozdov A.N., Pugachov A.T. // J. Phys. D: Appl. Phys. 2013. V. 46 (48). P. 485305. https://doi.org/10.1088/0022-3727/46/48/485305
  14. Penkov O.V., Pukha V.E., Starikova S.L., Khadem M., Starikov V.V., Maleev M.V., Kim D.E. // Biomaterials. 2016. V. 102. P. 130. https://doi.org/10.1016/j.biomaterials.2016.06.029
  15. Khadem M., Pukha V.E., Penkov O.V., Khodos I.I., Belmesov A.A., Nechaev G.V., Kabachkov E.N., Karaseov P.A., Kim, D.E. // Surf. Coat. Technol. 2021. V. 424. P. 127670. https://doi.org/10.1016/j.surfcoat.2021.127670
  16. Lifshitz Y., Kasi S.R., Rabalais J.W., Eckstein W. // Phys. Rev. B. 1990. V. 41 (15). P. 10468. https://doi.org/10.1103/PhysRevB.41.10468
  17. Popok V.N., Barke I., Campbell E.E., Meiwes-Broer K.H. // Surf. Sci. Rep. 2011. V. 66 (10). P. 347. https://doi.org/10.1016/j.surfrep.2011.05.002
  18. Troyanov S.I., Dimitrov A., Kemnitz E. // Angewandte Chemie. 2006. V. 118 (12). P. 2005. https://doi.org/10.1002/ange.200503964
  19. Gruzinskaya N.I., Aleshina V.E., Borshchevskii A.Ya., Troyanov S.I., Sidorov L.N. // Rus. J. Phys. Chem. A. 2007. V. 81. P. 312. https://doi.org/10.1134/S003602440702029X
  20. Khatymov R.V., Markov V.Y., Tuktarov R.F., Ioffe I.N., Muftakhov M.V., Avdoshenko S.M., Pogulay A.V., Sidorov L.N. // Int. J. Mass Spectrometry. 2008. V. 272. P. 119. https://doi.org/10.1016/j.ijms.2008.01.007
  21. Wang J., Zhang K., Zhang L., Wang F., Zhang J., Zheng W. // Appl. Surf. Sci. 2018. V. 457. P. 388. https://doi.org/10.1016/j.apsusc.2018.06.249
  22. Wang J., Ma J., Huang W., Wang L., He H., Liu, C. // Surf. Coat. Technol. 2017. V. 316. P. 22. https://doi.org/10.1016/j.surfcoat.2017.02.065
  23. Zhang L., Wang F., Qiang L., Gao K., Zhang B., Zhang, J. // RSC Advances, 2015. V. 5(13), P. 9635. https://doi.org/10.1039/C4RA14078H
  24. Chen X., Wang X., Fang D. // Fullerenes, Nanotubes and Carbon Nanostructures, 2020. V.28 (12), P. 1048. https://doi.org/10.1080/1536383X.2020.1794851
  25. Lin Y.H., Syue Y.C., Lin H.D., Chen U.S., Chang Y.S., Chen J.R., Shih H.C. // Appl. Surf. Sci. 2008. V. 255. P. 2139. https://doi.org/10.1016/j.apsusc.2008.07.084
  26. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095. https://doi.org/10.1103/PhysRevB.61.14095
  27. Ferrari A.C. // Surf. Coat. Technol. 2004. V. 180. P. 190. https://doi.org/10.1016/j.surfcoat.2003.10.146
  28. Mallet-Ladeira P., Puech P., Toulouse C., Cazayous M., Ratel-Ramond N., Weisbecker P., Vignoles G.L., Monthioux M. // Carbon. 2014. V. 80. P. 629. https://doi.org/10.1016/j.carbon.2014.09.006
  29. Ostrovskaya L.Y. // J. Nanosci. Nanotechnol. 2009. V. 9. P. 3665. https://doi.org/10.1166/jnn.2009.NS48
  30. Zhang L., Zong X., Guo F., He B., Yuan X. // Coatings. 2020. V. 10. P. 878. https://doi.org/10.3390/coatings10090878
  31. Bhattacharyya D., Depci T., Assemi S., Prisbrey K., Miller J.D. // ECS Transactions. 2015. V. 66 (14). P. 45. https://doi.org/10.1149/06614.0045ecst

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences