Peculiarities of Physical Properties of Film Structures Based on Tungsten Nanofilms with Various Phase Composition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The electrophysical properties of magnetron sputtered W thin films were studied depending on their thicknesses, substrate materials, phase compositions and structures. The results obtained indicated that W films were polycrystalline and contained two crystalline phases. Magneto-optical isotropy of Co thin films deposited on W was also observed. Dependencies of the resistivity on the W film thickness and substrate material was investigated experimentally and theoretically, which indicated the dominant contribution of charge carrier transport processes through crystallite boundaries.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Prokaznikov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Хат алмасуға жауапты Автор.
Email: prokaznikov@mail.ru
Ресей, Yaroslavl, 150067

R. Selyukov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: prokaznikov@mail.ru
Ресей, Yaroslavl, 150067

V. Paporkov

Demidov Yaroslavl State University

Email: prokaznikov@mail.ru
Ресей, Yaroslavl, 150003

Әдебиет тізімі

  1. Park Y.-K., Kim D.-Y., Kim J.-S., Nam Y.-S., Park M.-H., Choi H.-C., Min B.-C., Choe S.-B. // NPG Asia Mater. 2018. V. 10. P. 995. https://doi.org/10.1038/s41427-018-0090-x
  2. Topology in Magnetism / Ed. Zang J., Cros V., Hoffmann A. Cham: Springer, 2018. 416 p.
  3. Guimaraes A.P. Principles of Nanomagnetism. Cham: Springer, 2017. 330 p.
  4. Wang S.X., Taratorin A.M. Magnetic Information Storage Technology. London: Academic Press, 1999. 536 p.
  5. Rotenberg E., Freelon B.K., Koh H., Bostwick A., Rossnagel K., Schmid A., Kevan S.D. // New J. Phys. 2005. V. 7. P. 114. https://doi.org/10.1088/1367-2630/7/1/114
  6. Abdelhameed A.H., Angloher G., Bauer P., Bento A., Bertoldo E.,·Canonica L., Fuchs D., Hauff D., Ferreiro Iachellini N., Mancuso M.,·Petricca F., Probst F., Riesch J., Rothe J. // J. Low Temp. Phys. 2020. V. 199. P. 401. https://doi.org/10.1007/s10909-020-02357-x
  7. Lita A.E., Rosenberg D., Nam S., Miller A.J., Balzar D., Kaatz L.M., Schwall R.E. // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. P. 3528. https://doi.org/10.1109/TASC.2005.849033
  8. Mauskopf P.D. // Publ. Astron. Soc. Pac. 2018. V. 130. № 990. Р. 082001. https://doi.org/10.1088/1538-3873/aabaf0
  9. Abrue H., Anders J., Antel C. et al. // Phys. Rev. Lett. 2023. V. 131. № 3. Р. 031801. https://doi.org/10.1103/PhysRevLett.131.031801
  10. Abrue H., Mansour E.A., Antel C. et al. The FASER Detector. https://arxiv.org/pdf/2207.11427.pdf
  11. Aoki S., Ariga A., Ariga T. et al. // J. High Energ. Phys. 2020. V. 2020. Р. 33. https://doi.org/10.1007/JHEP01(2020)033
  12. Kulikova D.P., Sgibnev Y.M., Yankovskii G.M. et al. // Sci. Rep. 2023. V. 13. Р. 890. https://doi.org/10.1038/s41598-023-28204-z
  13. Васьковский В.О., Волочаев М.Н., Горьковенко А.Н., Кравцов Е.А., Лепаловский В.Н., Фещенко А.А. // ФТТ. 2021. Т. 63. Вып. 7. С. 915. https://doi.org/10.21883/FTT.2021.07.51042.046
  14. Udvardi L., Szunyogh L. // Phys. Rev. Lett. 2009. V. 102. № 20. P. 207204. https://doi.org/10.1103/PhysRevLett.102.207204
  15. Zakeri Kh., Zhang Y., Prokop J., Chuang T.-H., Sakr N., Tang W. X., Kirschner J. // Phys. Rev. Lett. 2010. V. 104. № 13. P. 137203. https://doi.org/10.1103/PhysRevLett.104.137203
  16. Prokaznikov A.V., Paporkov V.A., Selyukov R.V., Vasilev S.V., Savenko O.V. // Russ. Microelectron. 2022. V. 51. № 6. P. 466. https://doi.org/10.1134/S1063739722700184
  17. Buchin E.Yu., Vaganova E.I., Naumov V.V., Paporkov V.A., Prokaznikov A.V. // Tech. Phys. Lett. 2009. V. 35. № 7. P. 589. https://doi.org/10.1134/S1063785009070025
  18. Paporkov V.A., Prokaznikov A.V. // Russ. Microelectron. 2019. V. 48. № 1. P. 43. https://doi.org/10.1134/S1063739719010086
  19. Prokaznikov A.V., Paporkov V.A. // Russ. Microelectron. 2020. V. 49. № 5. P. 358. https://doi.org/ 10.1134/S1063739720040071
  20. Mattheiss L.F. // Phys. Rev. 1965. V. 139. № 6A. P. A1893. https://doi.org/10.1103/PhysRev.139.A1893
  21. Basaviah S., Pollak S.R. // J. Appl. Phys. 1968. V. 39. № 12. P. 5548. https://doi.org/10.1063/1.1656012
  22. Morcom W.R., Worrell W.L., Sell H.G., Kaplan H.I. // Metall. Trans. 1974. V. 5. P. 155. https://doi.org/10.1007/BF02642939
  23. Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Springer, 1999. 422 p.
  24. Li W., Fenton J.C., Wang Y., McComb D.W., Warburton P.A. // J. Appl. Phys. 2008. V. 104. № 9. P. 093913. https://doi.org/10.1063/1.3013444
  25. Vink T.J., Walrave W., Daams J.L.C., Dirks A.G., Somers M.A.J., van den Aker K.J.A. // J. Appl. Phys. 1993. V. 74. № 2. P. 988. https://doi.org/10.1063/1.354842
  26. Nix W.D., Clemens B.M. // J. Mater. Res. 1999. V. 14. № 8. P. 4367. https://doi.org/10.1557/JMR.1999.0468
  27. Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках. М.: Наука, 1984. 350 с.
  28. Selyukov R.V., Amirov I.I., Naumov V.V. // Russ. Microelectron. 2022. V. 51. № 6. P. 488. https://doi.org/10.1134/S1063739722700081
  29. Sandomirskii V.B. // Sov. Phys. JETP. 1967. V. 25. № 1. P. 101.
  30. Fuchs K. // Math. Proc. Cambridge Philos. Soc. 1938. V. 34. № 1. P. 100. https://doi.org/10.1017/S0305004100019952
  31. Tellier C.R., Tesser A.J. Size Effect in Thin Films. Elsevier, New York. 1982. 310 p.
  32. Mayadas A.F., Shatzkes M. // Phys. Rev. 1970. V. 1. № 4. P. 1382. https://doi.org/10.1103/PhysRevB.1.1382
  33. Абрикосов А.А. Основы теории металлов. М.: Наука. 1987. 520 с.
  34. Boiko V.V., Gantmakher V.F., Gasparov V.A. // Sov. Phys. JETP. 1974. V. 38. № 3. P. 604.
  35. Desai P.D., Chu T.K., James H.M., Ho C.Y. // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1069. https://doi.org/10.1063/1.555723
  36. Lee J.-S., Cho J., You C.-Y. // J. Vac. Sci. Technol. A. 2016. V. 34. № 2. P. 021502. https://doi.org/10.1116/1.4936261
  37. Thompson J.J. // Proc. Cambridge Philos. Soc. 1901. V. 11. P. 120.
  38. Sondheimer E.H. // Phys. Rev. 1950. V. 80. № 3. P. 401. https://doi.org/10.1103/PhysRev.80.401
  39. Sondheimer E.H. // Adv. Phys. 1952. V. 1. № 1. P. 1. https://doi.org/10.1080/00018735200101151
  40. Watjen J.I., Bright T.J., Zhang Z.M., Muratore C., Voevodin A.A. // J. Heat Mass Transf. 2013. V. 61. P. 106. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.063
  41. Karabacak T., Mallikarjunan A., Singh J.P., Ye D., Wang G.-C., Lu T.-M. // Appl. Phys. Lett. 2003. V. 83. № 15. P. 3096. https://doi.org/10.1063/1.1618944
  42. Соколов А.А., Тернов И.М., Жуковский В.Ч. Квантовая механика. М.: Наука, 1979. 528 с.
  43. Воронцов Ю.И. // УФН. 1981. Т. 133. № 2. С. 351. https://doi.org/10.3367/UFNr.0133.198102f.035
  44. Shen Y. G., Mai Y. W., Zhang Q. C., McKenzie D. R., McFall W. D., McBride W. E. // J. Appl. Phys. 2000. V. 87. № 1. P. 177. https://doi.org/10.1063/1.371841
  45. Маделунг О. Теория твердого тела. М.: Наука, 1980. 416 с.
  46. Ашкрофт Н., Мермин Н. Физика твердого тела. Т. 1. М.: Наука, 1979. 458 с.
  47. Hänsel H., Neumann W. Physik, eine Darstellung der Grundlagen. VII Festkörper. Berlin: VEB Deutscher Verlag der Wissenschaften, 1978. 333 s.
  48. Fu B., Lai W., Yuan Y., Xu H., Liu W. // J. Nucl. Mater. 2012. V. 427. № 1–3. P. 268. https://doi.org/10.1016/j.jnucmat.2012.05.015
  49. Ансельм А.И. Введение в теорию полупроводников. М.: Наука, 1978. 615 с.
  50. Bawendi M.G., Brus L.E., Ekimov A.I. Quantum Dots — Seeds of Nanoscience. Kungl. VetenskapsAkademien, 2023. Specific Background to the Nobel Prize in Chemistry 2023. The Nobel Committee for Chemistry. P. 1–17.
  51. Fröhlich H. // Physica. 1937. V. 4. № 5. P. 406. https://doi.org/10.1016/S0031-8914(37)80143-3
  52. Кулагин В.В., Хомяков А.Ю., Гаспарян Ю.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 10. С. 102. https://doi.org/10.31857/S1028096022100090
  53. Бакаева А.М., Бакаев А.В., Терентьев Д.А., Дубинко А.В., Журкин Е.Е. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 2. С. 79. https://doi.org/10.7868/S0207352818020130

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diffractograms of samples with 10 (a), 20 (b), 30 nm (c) thick W films deposited on glass (1), Si (2), SiO2/Si (3).

Жүктеу (439KB)
3. Fig. 2. Diffractograms of samples with 30 nm thick W films deposited on SiO2/Si at 573 (1) and 773 K (2). Measurement speed of 1 (a) and 0.125 deg/min (b).

Жүктеу (288KB)
4. Fig. 3. SEM images of W films with thicknesses of 10 (a, b), 20 (c, d), 30 nm (e, f) deposited on Si (a, c, e) and on SiO2/Si (b, d, f).

Жүктеу (2MB)
5. Fig. 4. SEM images of a 20 nm thick W film on SiO2/Si (a) and a 30 nm thick W film on Si (b) obtained at an electron beam incidence angle of 70°.

Жүктеу (668KB)
6. Fig. 5. Magneto-optical equatorial Kerr effect (δ) in the Co (6 nm)/W/SiO2/Si system for different tungsten film thicknesses: a - 10; b - 20; c - 30 nm.

Жүктеу (223KB)
7. Fig. 6. Resistivity ρ of W films as a function of their thickness t for different substrates: 1 - SiO2/Si; 2 - Si; 3 - glass; 4, 5 - 30 nm thick film deposited on SiO2/Si at 573 and 773 K, respectively.

Жүктеу (66KB)

© Russian Academy of Sciences, 2024