The set of Banach limits and its discrete and continuous subsets

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The note states criteria for a Banach limit to belong to discrete or to continuous part of the set of Banach limits. Diameters and radii of these parts are found, too.

Sobre autores

N. Avdeev

Voronezh State University

Autor responsável pela correspondência
Email: nickkolok@mail.ru
Rússia, Voronezh

R. Zvolinskii

Voronezh State University

Email: roman.zvolinskiy@gmail.com
Rússia, Voronezh

E. Semenov

Voronezh State University

Email: nadezhka_ssm@geophys.vsu.ru
Rússia, Voronezh

A. Usachev

Voronezh State University; Central South University

Email: dr.alex.usachev@gmail.com
Rússia, Voronezh; Changsha, Hunan, People's Republic of China

Bibliografia

  1. Lorentz G.G. A contribution to the theory of divergent sequences // Acta mathematica. 1948. V. 80. № 1. P. 167–190.
  2. Sucheston L. Banach limits // The American Mathematical Monthly. 1967. V. 74. № 3. P. 308–311.
  3. Mazur S. O metodach sumowalnosci // Ann. Soc. Polon. Math.(Suppl.). 1929. P. 102–107.
  4. Банах С. Теория линейных операций // РХД, М. – Ижевск, 2001. 272 с.
  5. Eberlein W.F. Banach–Hausdorff limits // Proceedings of the American Mathematical Society. 1950. V. 1. № 5. P. 662–665.
  6. Semenov E.M., Sukochev F.A. Invariant Banach limits and applications // Journal of Functional Analysis. 2010. V. 259. № 6. P. 1517–1541.
  7. Semenov E., Sukochev F., Usachev A., Zanin D. Dilation invariant Banach limits // Indagationes Mathematicae. 2020. V. 31. № 5. P. 885–892.
  8. Aliprantis C.D., Burkinshaw O. Positive operators // Academic Press. 1985. 376 p.
  9. Chou C. On the size of the set of left invariant means on a semigroup // Proceedings of the American Mathematical Society. 1969. V. 23. № 1. P. 199–205.
  10. Семенов Е.М., Сукочев Ф.А., Усачев А.С. Геометрия банаховых пределов и их приложения // Успехи математических наук. 2020. Т. 75. № 4. С. 153–194.
  11. Семенов Е.М., Сукочев Ф.А., Усачев А.С. Основные классы инвариантных банаховых пределов // Изв. РАН. Сер. матем. 2019. Т. 83. № 1. С. 140–167.
  12. Семенов Е.М., Сукочев Ф.А., Усачев А.С. Структурные свойства множества банаховых пределов // Докл. РАН. 2011. Т. 441. № 2. С. 177–178.
  13. Semenov E., Sukochev F. Extreme points of the set of Banach limits // Positivity. 2013. Vol. 17. № 1. P. 163–170.
  14. Semenov E., Sukochev F., Usachev A., Zanin D. Invariant Banach limits and applications to noncommutative geometry // Pacific Math. J. 2020. V. 306. № 1. P. 357–373.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024