ANALYSIS OF BRONCHIAL ASTHMA-PREDISPOSING INTERGENIC AND GENE-ENVIRONMENTAL CORRELATIONS

Abstract


Aim. The objective of the study was to assess the contribution of associated exposure of genetic and environmental (tobacco smoke) factors on the development of bronchial asthma. Materials and methods. 104 adolescents aged 12-18, ill with bronchial asthma including 49 smokers (45 - with mild degree of severity and 4 - with moderate one) and 55 nonsmokers were examined. Molecular-genetic studies were carried out at the Laboratory of Epidemiological Genetics of Medicogenetic Scientific Center of RAMS ((MGSC). Results. Bronchial asthma in smoking patients is associated with GSDMB (rs7216389), NOS3 (VNTR) and ADRB2 (Gln27Glu) genes, in nonsmoking patients - with GSDMB (rs7216389), CHRNA5 (rs16969968), ADRB2 (Gln27Glu) and THOI (STR) genes. Alleles and genotypes of increased BA-forming risk were detected, additional genetic attributive risk confirming and objectivizing the role of tobacco-smoking in BA development was determined. Differences were revealed in the structure and character of correlations between gene locuses predisposing to BA development in smokers and non-smokers. Conclusion. Analysis of intergenic correlations permitted to state a complicated character of correlations between genes-candidates of BA development and genes-candidates of predisposition to tobacco-smoking, conditioning the possible pathogenetic differences in the exposure of environmental risk factor (tobacco-smoking).

References

  1. Бронхиальная астма у детей. Стратегия лечения и профилактика: национальная программа. 4-е изд., испр. и доп. М.: Оригинал-макет 2012; 184.
  2. Реброва О. Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ Statistics. М.: Медиа Сфера 2002; 312.
  3. Фрейдин М. Б., Огородова Л. М., Цой А. Н., Бердникова Н. Г. Генетика бронхиальной астмы // Генетика бронхолегочных заболеваний / под ред. В. П. Пузырева, Л. М. Огородовой. М.: Атмосфера 2010; 160.
  4. Barnes P. J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy. Clin. Immunol 2013; 131 (3): 636-645.
  5. Daubner S. C., Le T., Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011; 508 (1): 1-12.
  6. Gallagher J., Hudgens E., Williams A. Mechanistic indicators of children asthma (MICA) study: piloting an integrative design for evaluating environmental health. BMC Public Health 2011; 19 (11): 344.
  7. Girodet P. O. What is the therapeutic response to corticosteroid in smokers with asthma? Rev Mal Respir 2008; 25 (2): 185-192.
  8. Hunter D. J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 2005; 6: 287-298.
  9. Tamimi A., Serdarevic D., Hanania N. A. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir. Med. 2012; 106 (3): 319-328.
  10. Thomson N. C., Chaudhuri R. Asthma in smokers: challenges and opportunities. Curr. Opin. Pulm. Med. 2009; 15 (1): 39-45.

Statistics

Views

Abstract - 376

PDF (Russian) - 239

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2014 Batozhargalova B.C., Petrova N.V., Timkovskaya E.E., Mizernitsky Y.L., Zinchenko R.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies