Cite item


Aim. To give morphological assessment of catheter-associated infection model in laboratory mice in conditions of immunosuppression caused by introduction of cyclophosphamide. Materials and methods. Modeling of catheter-associated infection for morphological assessment of changes in the surrounding tissues was carried out. Animals were implanted catheters with preliminary grown staphylococci biofilms; they were also once and repeatedly introduced bacterial suspensions into the tissues surrounding the catheter. Cellular composition of inflammatory infiltrate and microbial colony volume were assessed during three days. Results. Restrictive shaft round the catheter consisting of fibrin and cellular elements of inflammatory infiltrate with different thickness and composition depending on observation terms and experimental peculiarities was formed. Immunosuppression causes more marked growth of staphylococcus colonies and less pronounced inflammatory response than in case of introducing staphylococcus cultures without cyclophosphamide.

About the authors

V V Litvinov



  1. Литвинов В. В., Лемкина Л. М., Фрейнд Г. Г., Коробов В. П. Экспериментальные подходы к созданию модели катетер-ассоциированной инфекции, обусловленной биопленками стафилококков. Вестник уральской медицинской академической науки 2011; 38 (4): 105-106.
  2. Майборода А. А. Динамическая структура очага воспаления. Морфофизиологические критерии адаптивных состояний. Иркутск 1979; 38-49.
  3. Bouza E., San Juan R., Munoz P., Pascau J., Voss A., Desco M. A European perspective on intravascular catheter-related infections: report on the microbiology, workload, aetiology and antimicrobial susceptibility (ESGNI-005 Study). Clin. Microbiol. Infect. 2004; 10: 838-842.
  4. Davies M., Martin J., Thomas G. J., Lovett D. H. Proteinases and glomerular matrix turnover. Kidney Int. 1992; 41: 671-677.
  5. Dong Y. H., Wang L. H., Xu J. L., Zhang H. B., Zhang X. F., Zhang L. H. Quenching quorum-sensing-dependent bacterial infection by an N-acyl-homoserine lactonase. Nature 2001; 411: 813-817.
  6. Donlan R. M. Biofilms: microbial life on surfaces. Emerg. Infect. Diseases 2002; 8: 381-390.
  7. Haugo A. J., Watnick P. I. Vibrio cholerae Cyt R is a repressor of biofilm development. Mol. Microbiol. 2002; 45: 471-483.
  8. James D. Bryers. Medical biofilms. Biotechnol. Bioeng. 2008; 100: 1-18.
  9. Levine A. S., Schimpf S. C., Graw R. G., Young R. C. Hematologic malignancies and other marrow failure states: progress in the management of complicating infections. Semin. Hematol. 1974; 11: 141-202.
  10. Mermel L., Farr B., Sheretz R. Guidelines for the management of intravascular catheter-related infections. Clin. Infect. Dis. 2001; 32: 1249-1272.
  11. O Toole G. A. To build a biofilm. J. Bacteriol. 2003; 185: 2687-2689.
  12. Rong Wang, Burhan A. Khan, Gordon Y. C. Cheung, Thanh-Huy L. Bach, Max Jameson-Lee, Kok-Fai Kong, Shu Y. Queck, Michael Otto. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 2011; 121 (1): 238-248.
  13. Rytömaa T. The chalone concept. Int Rev. Exp. Pathol. 1976; 16: 155-206.
  14. Safdar N., Maki D. G. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Inten Care. Med. 2004; 30: 62-67.
  15. Warren D. K., Zack J. E., Elward A. M., Cox M. J., Fraser V. J. Nosocomial primary bloodstream infections in intensive care unit patients in a nonteaching community medical center: a 21-month prospective study. Clin. Infect. Dis. 2001; 33: 1329-1335.

Comments on this article

Copyright (c) 2014 Litvinov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies