DIFFERENCES IN PHYLOGENETIC FACTORS OF ETIOLOGY AND PATHOGENESIS UNITY OF METABOLIC PANDEMIAS - CIVILIZATION DISEASES


Cite item

Abstract

Regulation of metabolism in vivo can be understood when considering the formation in phylogenesis of the function of humoral, hormonal mediators, vegetative regulators separately: a) at the cell level; b) in paracrinally regulated cell communities (PC), organs and systems and c) at the body level. Each of regulation levels was formed at different stages of phylogenesis; the completion of levels occurred, we suppose, when reaching “relative biological perfection”. Formation of organs and organ systems was finished also, in our opinion, at the level of this perfection. When three levels reached sequentially were analyzed in Homo sapiens , it was revealed with systemic approach that through “relative biological perfection” at the level of the body, “regular mismatch” of metabolism is observed. Phylogenetic mismatch of the regulation of metabolism at three levels of “relative biological perfection” are etiological factors of “metabolic pandemias” of each of “civilization diseases”. All “metabolic pandemias” including atherosclerosis, metabolic arterial hypertension, IR status, obesity, metabolic syndrome and nonalcoholic fatty liver disease are disorders of one, late in phylogenesis, biological function of locomotion. Etiological basis for metabolic (essential) arterial hypertension is a regular mismatch: a local compensation of disturbances of the biological response metabolism ↔ microcirculation in the distal arterial bed with endothelium-dependent vasodilatation and only systemic compensation at the level of the body in the proximal part. For millions of years, there coexist two functionally connected and phylogenetically separated pools of fatty cells: the earlier visceral fatty cells (VFC) and the later subcutaneous adipocytes. Insulin blocks TG hydrolysis and release of nonetherified fatty acids (NEFA) into the blood plasma only from adipocytes; hormone cannot block lipolysis in phylogenetically early VFC and inhibit the effect of phylogenetically early hormones on them. Increase in blood plasma NEFA in the course of biological response of stress in vivo does not accompany proportional growth in albumin concentration. The function of phylogenetically early resident macrophages and monocytes ↔ macrophages, differentiated in intima of arteries in situ and ex tempore , is not identical. Biological response of fatty cells deposit into adipocytes occurs in the form of nonpolar triglycerides in lipoprotein composition, but their release - only in the form of polar NEFA.

Full Text

Филогенетическая теория общей патологии (2012 г.) - современное продолжение гуморальной теории К. Рокитанского (1826 г.) и клеточной теории патологии Р. Вирхова (1846 г.). Она позволяет сделать следующий шаг в желании (необходимости) познать этиологию и патогенез столь распространенных в популяции всех стран мира заболеваний, которые мы именуем «метаболические пандемии», «болезни цивилизации». Чем выше индустриальное развитие страны, тем больше в популяции частота распространения метаболических пандемий. К ним относят: атеросклероз, метаболическую (эссенциальную) артериальную гипертонию (АГ), синдром резистентности к инсулину (ИР), метаболический синдром (МС), ожирение и неалкогольную жировую болезнь печени. Согласно филогенетической теории общей патологии, если частота неинфекционного заболевания в популяции человека превышает 5-7 %: а) основу этиологии и патогенеза составляет нарушение биологических функций и биологических реакций; б) для каждого из заболеваний патогенез рационально выстраивать в аспекте этиологических факторов филогенеза, в) суммируя при этом нарушения этиологии, которые сформировались на разных ступенях филогенеза при воздействии, в частности, неблагоприятных факторов внешней среды. В основу филогенетической теории общей патологии, единого алгоритма формирования афизиологичных процессов, становления патогенеза метаболических пандемий мы заложили: а) достижения гуморальной и клеточной патологии XIX века; б) сформированную теорию биологических функций и биологических реакций in vivo; в) представления XX века о параллельном, одновременном формировании физиологичных и афизиологичных процессов - «метаболических пандемий» на ступенях филогенеза [10]. Филогенетическая теория общей патологии: единение патогенеза метаболических пандемий Если онтогенез - это «анамнез» особи, то филогенез - единый анамнез последовательного становления на ступенях филогенеза физиологии, биохимии и патологии каждого из видов животных, включая и Homo sapiens. Основными методологическими приемами биологии являются: а) единение структуры и функции; б) единение основных этапов фило- и онтогенеза; в) единая технология становления в филогенезе функциональных систем; г) использование системного подхода для объяснения того, что происходит in vivo. Мы предлагаем дополнить перечень еще двумя методологическими приемами: а) преемственность становления в филогенезе биологических функций и биологических реакций и б) прием биологической субординации. Становление биологических функций и биологических реакций в филогенезе происходило главным образом не путем формирования чего-то принципиально нового, что характерно для мутаций генов, а путем длительного, последовательного совершенствования того, что сформировано на более ранних ступенях; это методологический прием биологической преемственности. Согласно же биологической субординации новый гуморальный, нейрогормональный, нервный регулятор in vivo органично надстраивается над ранее существующими, логично с ними взаимодействует, но изменить (блокировать) регуляторное действие филогенетически более раннего гуморального медиатора более поздний регулятор не может. В течение сотен миллионов лет на разных ступенях филогенеза, далеко не одновременно, сформировались: 1) биологическая функция трофологии, функция питания; 2) функция гомеостаза; 3) биологическая функция эндоэкологии («чистоты» межклеточной среды); 4) функция адаптации; 5) биологическая функция продолжения вида; 6) функция локомоции (движения) и 7) биологическая когнитивная функция, функция интеллекта. Становление биологических функций на ступенях филогенеза происходило не одновременно; между отдельными функциями проходили порой миллионы лет. Биологическая функция гомеостаза реализует условие: в межклеточной среде in vivo для каждой из клеток всегда всего достаточно. Функция гомеостаза не допускает снижения концентрации субстратов, каталитических аналитов (физико-химических параметров) в межклеточной среде ниже нижней границы физиологичного интервала. Реализуют биологическую функцию гомеостаза сотни биологических, физико-химических, биохимических и физиологичных реакций. Биологическая функция эндоэкологии - непревышение верхнего предела физиологичного интервала концентраций ни одним из аналитов, физико-химическим параметром, эндогенными флогогенами (инициаторами биологической реакции воспаления), экзогенными патогенами и ксенобиотиками. Функция эндоэкологии - поддержание «чистоты» единого и локальных пулов межклеточной среды, «фрагмента» третьего мирового океана, который приватизировала каждая особь и в котором, как и миллионы лет ранее в пермском периоде, продолжают жить все клетки in vivo. Все, что оказывается в межклеточной среде в концентрации выше верхней границы физиологичного интервала, организм рассматривает как «биологический мусор», который подлежит удалению. Согласно филогенетической теории общей патологии становление каждой из биологических функций, биологических реакций на разных ступенях происходило на трех последовательных уровнях: а) на аутокринном (клеточном) уровне; б) в паракринно регулируемых сообществах клеток (ПС), структурных и функциональных единицах каждого органа и в) на уровне организма. Каждое ПС состоит из трех функционально разных пулов клеток: а) специализированные клетки, которые определяют функцию ПС; б) единая структура локального перистальтического насоса - артериола мышечного типа и в) пул клеток рыхлой соединительной ткани (РСТ), которые регулируют функцию ПС. Каждый из трех уровней сформирован на основе разных физико-химических, биохимических, физиологичных реакций, при разных способах регуляции. Завершало каждый из уровней в филогенезе, мы полагаем, состояние относительного биологического совершенства. Достижение этого состояния инициировало формирование следующего уровня относительного биологического совершенства, включая достижение этого состояния на третьем уровне, в организме, в том числе и у вида Homo sapiens. Однако по истечении миллионов лет на разных ступенях филогенеза с интервалами в миллионы лет заложенные в филогенезе изначально: а) различия физико-химических, биохимических и физиологических реакций на каждом из уровней «относительного биологического совершенства»; б) разные способы регуляции биологических функций и биологических реакций в условиях воздействия афизиологичных факторов внешней среды; в) спонтанно происходящие мутации генов привели к тому, что сквозь «относительное биологическое совершенство» на уровне организма у Homo sapiens начали «проглядывать» отдельные регуляторные несоответствия метаболизма. Мы полагаем, что регуляторные несоответствия метаболизма на трех уровнях относительного биологического совершенства являются этиологическими факторами метаболических пандемий, каждой из болезней цивилизации. Одновременно патогенез метаболических пандемий является во многом сходным. Что же с позиций филогенетической теории общей патологии дает нам основание говорить о различии факторов этиологии и общности патогенеза болезней цивилизации? На протяжении миллионов лет на разных ступенях филогенеза на первом аутокринном (клеточном) уровне и на втором уровне ПС, органов и систем произошло формирование биологической функции трофологии (питания), биологической функции гомеостаза; биологической функции эндоэкологии, биологической функции адаптации и продолжения вида. И только одна соматическая биологическая функция локомоции (движение за счет сокращения поперечно-полосатых миоцитов) сформировалась на последнем третьем уровне, на уровне организма. Несоответствия сформировались раздельно на трех уровнях относительного биологического совершенства. Формирование логичной, сочетанной регуляции метаболизма произошло раздельно на каждом из трех уровней относительного биологического совершенства, но, к сожалению, не между уровнями, особенно между вторым и третьим. Согласно филогенетической теории общей патологии, все метаболические пандемии, включая атеросклероз, метаболическую АГ, состояние ИР, ожирение и неалкогольную жировую болезнь печени, являются нарушениями всего-то одной, поздней в филогенезе биологической функции, функции локомоции. И если этиологические факторы индивидуальны для каждой из метаболических пандемий, то патогенез для всех болезней цивилизации является во многом сходным. Чем позднее на ступенях филогенеза произошло становление биологической функции: а) тем большее количество регуляторных несоответствий метаболизма проглядывает через относительное биологическое совершенство на уровне организма, б) тем чаще клиницистам приходится уделять внимание коррекции этих нарушений в стремлении улучшить качество жизни пациентов. И естественно, регуляторные несоответствия метаболизма в первую очередь подлежат компенсации биологическими, но не лекарственными способами. Как пример приведем становление на ступенях филогенеза биологической функции трофологии, биологической реакции экзотрофии, системы липопротеинов (ЛП) [13]. Миллионы лет все жирные кислоты (ЖК) в ПС, гидрофильной (водной) межклеточной среде переносили одни ЛП высокой плотности (ЛПВП) в форме полярных глицеридов и фосфолипидов (ФЛ); все клетки поглощали ЖК только пассивно путем переэтерификации между ФЛ в составе ЛПВП и ФЛ плазматической мембраны. На более поздних ступенях сформировалась система ЛП низкой плотности (ЛПНП); они стали переносить существенно больше ЖК в форме неполярных эфиров со спиртом глицерином (ТГ) и спиртом холестерином (ХС) в форме эфиров холестерина (ЭХС). Клетки стали поглощать их активно путем апоВ-100-рецепторного эндоцитоза [6]. При становлении биологической функции локомоции на уровне организма произошло формирование наиболее поздних в филогенезе ЛП очень низкой плотности (ЛПОНП). Они стали переносить больше, но только насыщенных и мононенасыщенных ЖК (НЖК + МЖК) в форме ТГ и только к зависимым от инсулина клеткам. С качественными нарушениями ЛПВП мы практически не встречаемся; патология ЛПНП бывает редко - семейная гиперхолестеринемия. Нарушения же в составе ЛПОНП: гипертриглицеридемия, гиперхолестеринемия, гипергликемия - являются важными проявлениями патогенеза метаболических пандемий. ЖК в форме эфиров со спиртом глицерином in vivo ≈ в 100 раз больше, чем со спиртом ХС; однако все ТГ депонированы в клетках, а ЭХС (моно- и поли- ЭХС) - вне клеток. В плазме крови ХС в несколько раз больше, чем ТГ, точнее спирта глицерина. Филогенетически же диагностическое значение в первую очередь имеет содержание ТГ [31] и только во вторую - ХС. Мы предлагаем объективно оценивать диагностическое значение ХС-ЛПНП только при концентрации ТГ менее 2 ммоль/л. Возрастание в плазме крови содержания ТГ всегда, порой существенно, повышает общую концентрацию ХС в плазме крови и ХС-ЛПНП [24]. В составе ЛПНП при гипертриглицеридемии и физиологичном уровне ТГ возрастает содержание ХС в разной форме: в первом случае - неэтерицифированный ХС; во втором - ХС, которым этерифицированы полиеновые ω-3 и ω-6 ЖК (ПНЖК) в форму полиэфиров ХС. Раздельная регуляция дистального и проксимального отделов артериального русла in vivo Согласно филогенетической теории общей патологии со сформированной на уровне организма биологической функцией локомоции на разных ступенях филогенеза последовательно произошло следующее. Из филогенетически ранних гладкомышечных клеток сформировались поздние поперечно-полосатые скелетные миоциты. Далее система замкнутого кровообращения, поток крови в котором обеспечивали артериолы мышечного типа в каждом из ПС клеток, преобразовалась в систему, в которой основным движителем стало сердце. Позднее в филогенезе сердце встроилось в филогенетически раннюю систему из миллионов филогенетически ранних перистальтических насосов в каждом из ПС. Артериолы сформировали дистальный отдел артериального русла с невысоким гидродинамическим давлением. Сердце и артерии эластического типа сформировали проксимальный отдел русла; сердце развивало куда более высокое артериальное давление (АД); оно способно воздействовать (повысить) и на гидродинамическое давление в проксимальном отделе русла. В артериолах мышечного типа интимы нет; она есть только в артериях эластического типа, в проксимальном отделе русла. Поэтому атероматоз (деструктивно-воспалительное поражение интимы) при атеросклерозе развивается в артериях только эластического и смешанного типа. Если присмотреться внимательно, предшественником многокамерного клапанного сердца является артериола мышечного типа; сердце сокращается также по спирали [4]. Гидродинамическое давление в дистальном отделе русла регулирует биологическую реакцию метаболизм↔микроциркуляция на уровне ПС и органов: реализует ее биологическая реакция эндотелийзависимой вазодилатации. Если компенсаторных возможностей дистального отдела артериального русла для компенсации нарушений биологической реакции метаболизм↔микроциркуляция оказывается недостаточно, к нормализации in vivo в рамках биологической функции адаптации, биологической реакции компенсации, с уровня организма подключается проксимальный отдел артериального русла и АД. Ни один из сформированных рано в филогенезе органов не может регулировать филогенетически позднюю функцию миокарда, систему кровообращения и, естественно, АД. Все гуморальные медиаторы клеток РСТ в ПС действуют на уровне паракринных сообществ и органов, в которых они синтезированы [5]; редким исключением на уровне организма является практически малоэффективное действие лептина и адипонектина жировых клеток. Повышение АД в проксимальном и далее дистальном отделе артериального русла нормализует биологическую реакцию метаболизм↔микроциркуляция в органах на уровне организма. Этиологически важным является то, что гидродинамическое давление и АД регулируют биологическую реакцию метаболиз↔микроциркуляция по-разному; гидродинамическое давление в дистальном отделе осуществляет локальную регуляцию на уровне ПС и органов; АД в проксимальном отделе инициирует системную регуляцию одновременно на уровне организма в проксимальном и дистальном отделах артериального русла. Гибель клеток апоптозом, локальная биологическая реакция воспаления, нарушение эндотелийзависимой вазодилатации Гуморальная регуляция артериол мышечного типа, формирование волны перистальтики, отсутствие ретроградного кровотока в артериолах без клапанов - реализация функции биологической реакции эндотелийзависимой вазодилатации [1]. Основой регуляторного действия биологической реакции явилось пассивное действие двух гуморальных медиаторов - эндотелина и оксида азота (NO). Чтобы действие гуморальных медиаторов происходило в пределах одного ПС, время жизни их, включая и NO, не превышает долей секунды. Физиологичным состоянием перистальтического насоса является сокращение; инициирует его действие эндотелина. За синтезом NO следует реакция вазодилатации; действие NO, пересиливая активность эндотелина, расслабляет гладкомышечные клетки артериолы мышечного типа, формируя и волну сокращения. Среди химических элементов в таблице Д. И. Менделеева окисление↔восстановление окислов N происходит с наиболее высокой скоростью; это цепная реакция NO→ NO2-→ NO3-→ NO2-→ NO. Цепная реакция превращения окислов N по длине артериолы мышечного типа и формирует волну перистальтики гладкомышечных клеток. Биологическая реакция эндотелийзависимой вазодилатации на уровне ПС и органов регулирует биологическую реакцию метаболизм↔микроциркуляция. При гибели клеток в ПС по типу физиологичного апоптоза, не говоря уже о некрозе, межклеточную среду «замусоривают» тельца апоптоза - эндогенные активаторы биологической функции эндоэкологии, биологической реакции воспаления [15]. Утилизацию эндогенных флогогенов (экзогенных патогенов) in situ в ПС осуществляют оседлые макрофаги, ранние в филогенезе клетки РСТ. Для физиологичной денатурации погибших вследствие апоптоза клеток, как первый этап биологической реакции воспаления, клетки РСТ нарабатывают активные формы кислорода (АФК) [21]. В ПС клетки РСТ секретируют АФК с целью физиологичной денатурации протеинов; одновременно происходит и окисление ЖК в липидах; определять их окисление существенно проще. Если в ПС, независимо от этиологических факторов, длительно гибнут клетки, продукция АФК в пуле РСТ может превысить оптимальный субстратзависимый уровень. Избыток АФК блокирует биодоступность NO для гладкомышечных клеток перистальтического насоса, превращая NO в нитротрозилы (OON-). Отсутствие дилатации артериол мышечного типа нарушает не только биологическую функцию эндоэкологии, но и биологическую функцию гомеостаза (гипоксия), нарушая регуляцию биологической реакции метаболизм↔микроциркуляция. В ПС это активирует реализацию биологической функции адаптации, биологической реакции компенсации - восстановление микроциркуляции путем локального (in situ) повышения гидродинамического давления путем активации перистальтических насосов; однако потенциально возможности такой компенсации невелики. Вот тогда-то и происходит формирование уже не локальной, а системной компенсации биологической реакции метаболизм↔микроциркуляция путем системного повышения АД на уровне организма, в проксимальном и во всем дистальном отделе артериального русла. Биологическая роль физического фактора давления гидродинамического в дистальном и АД в проксимальном отделе, кроме реализации базального уровня циркуляции крови, - это регуляция биологической реакции метаболизм↔ микроциркуляция. Биологическая роль инсулина - повышение эффективности функции митохондрий и наработки аденозинтрифосфата (АТФ) При становлении биологической функции локомоции на уровне организма скелетные миоциты стали количественно доминировать in vivo. Для обеспечения их субстратами наработки энергии, синтеза АТФ β-клетки поджелудочной железы поздно в филогенезе начали синтезировать гуморальный медиатор инсулин. Биологическая роль инсулина - обеспечение энергией биологической функции локомоции [11]. Поскольку запасать АТФ возможности in vivo нет, инсулин экспрессировал образование из РСТ подкожных адипоцитов, которые призваны запасать субстраты для наработки АТФ. Инсулинозависимые адипоциты накапливают НЖК и МЖК в цитоплазме жировых клеток в форме ТГ в «каплях» липидов. Для реализации биологической функции локомоции инсулин уже на уровне организма сформировал пулы зависимых от инсулина клеток: скелетные миоциты, кардиомиоциты, подкожные адипоциты, перипортальные гепатоциты и оседлые макрофаги Купффера [27]. Эти клетки на плазматической мембране имеют рецепторы к инсулину и инсулинозависимые глюкозные транспортеры - ГЛЮТ4. Согласно филогенетической теории общей патологии на самых ранних ступенях филогенеза пищей наиболее ранних животных клеток архей миллионы лет являлась уксусная кислота, ацетат неорганического происхождения. В первом мировом океане температура соответствовала изоволюметрическому интервалу воды (36-42 ºС); клетки из ацетил-КоА синтезировали главным образом пальмитиновую НЖК. Температура плавления пальмитиновой НЖК (+63 ºС) позволила клеткам формировать функционально активную плазматическую мембрану из бислоя ФЛ. В фосфатидилхолинах в sn-1 спирта глицерина всегда этерифицирована пальмитиновая НЖК. Глюкозы как субстрата питания, можно полагать, еще долгое время не было; археи глюкозу не синтезировали. Археи же сформировали митохондрии с геномом, цикл Кребса и последовательность физико-химических реакций дыхательной цепи. Митохондрии по сей день - единственные органеллы, которые могут химическую энергию ацетил-КоА перевести в биохимическую энергию макроэргического АТФ [16]. С годами количество неорганического ацетата в окружающей среде уменьшалось; жизнь экзотрофов становилась более сложной. Это инициировало формирование аутотрофных одноклеточных; в течение следующих миллионов лет сформировались аутотрофы. Используя энергию солнца, они стали синтезировать глюкозу из СО2 + Н2О. Далее произошло симбиотическое слияние аутотрофных клеток с экзотрофными археями. Филогенетически рано аутотрофы позаимствовали у архей: а) митохондрии с их геномом; б) сфинголипидные фрагменты (рафты) плазматической мембраны с системой поглощения НЭЖК - CD36 скевенждер-эндоцитоз и в) семейство белков цитоплазмы, которые переносят ацил-КоА от рафтов клеточной мембраны к митохондриям [2]. Различие параметров поглощения клетками ЖК и глюкозы В филогенезе рано, еще от архей, клетки имеют активированную систему поглощения ЖК в форме НЭЖК (CD36) и только пассивную по градиенту концентрации систему поглощения глюкозы через ГЛЮТ1-ГЛЮТ3. И только действие позднего в филогенезе инсулина сформировало в плазматической мембране инсулинозависимых клеток более совершенные транспортеры глюкозы - ГЛЮТ4. Однако и они не обладают высокой производительностью. На ступенях филогенеза активное поглощение клетками глюкозы так и не создано; вероятно, это невозможно по причине высокой гидрофильности глюкозы. С ранних ступеней филогенеза, если есть возможность активированным способом поглощать из межклеточной среды НЭЖК, клетки глюкозу не поглощают. При высоком градиенте концентрации НЭЖК в плазме крови (0,5-0,8 ммоль/л) и следовых количествах НЭЖК в цитоплазме клетки быстро поглощают НЭЖК. Содержание глюкозы в межклеточной среде почти на порядок выше, чем НЭЖК, но концентрация глюкозы в цитоплазме всего лишь незначительно ниже уровня гликемии в межклеточной среде; градиент концентрации глюкозы межклеточная среда↔цитоплазма низкий. Напомним, что альбумин специфично (внутри молекулы) связывает две НЭЖК; еще половину этого количества он связывает неспецифично, на поверхности белка. Пока есть возможность из межклеточной среды поглощать НЭЖК, клетки не начнут поглощать глюкозу. Чтобы клетки при действии ГЛЮТ4 стали поглощать глюкозу, в межклеточной среде содержание НЭЖК должно стать низким. Когда поздно в филогенезе, на уровне организма, β-клетки начали синтез инсулина, регуляция метаболизма глюкозы миллионами лет ранее уже была завершена; для инсулина места в ней нет. Биологическая роль инсулина - обеспечение энергией биологической функции локомоции, снабжение филогенетически ранних митохондрий таким субстратом, который позволил бы органеллам повысить эффективность митохондрий - количество АТФ, нарабатываемого митохондриями в единицу времени. Инсулин изначально биологически предназначен для регуляции метаболизма ЖК, для формирования in vivo такого субстрата ЖК, который митохондрии окисляют с высокой константой скорости реакции и с высокой эффективностью нарабатывают АТФ [32]. Согласно филогенетической теории общей патологии, для активации поглощения клетками глюкозы инсулин блокирует в большом пуле адипоцитов активность гормонзависимой липазы и освобождение НЭЖК в межклеточную среду. Понижая содержание НЭЖК в межклеточной среде, инсулин активирует поглощение клетками глюкозы через ГЛЮТ4 и филогенетически ранний синтез из нее пальмитиновой НЖК. Специфичность филогенетически позднего действия инсулина состоит в том, что каждую эндогенно синтезированную из глюкозы С16:0 пальмитиновую НЖК инсулин превращает в оптимальную для окисления митохондриями ω-9 С18:1 олеиновую МЖК. Окисляя эту МЖК, характерную для животных клеток, митохондрии повышают наработку АТФ до максимальной производительности органелл; это позволяет обеспечить in vivo потребности в энергии при реализации биологической функции локомоции. Инсулин экспрессирует одновременно синтез пальмитоил-КоА-элонгазы, превращая только эндогенную С16:0 пальмитиновую НЖК в С18:0 стеариновую НЖК. Далее инсулин, вероятно, разными путями экспрессирует синтез стеарил-КоА-десатуразы, превращая С18:0 стеариновую НЖК в ω-9 С18:1 олеиновую НЖК. Ключевым в действии инсулина, мы полагаем, является экспрессия стеарил-КоА-десатуразы и синтез гепатоцитами ω-9 С18:1 олеиновой МЖК. Ингибирование in vivo активности пальмитоил-КоА-элонгазы сопряжено с образованием в гепатоцитах афизиологичных ТГ, таких как пальмитоил-пальмитоил-пальмитат глицерол (ППП) с температурой плавления +49 ºС. При низкой экспрессии синтеза, при ингибировании активности стеарил-КоА-десатуразы возможен синтез таких афизиологичных ТГ, как стеарил-стеарил-стеарат глицерол (ССС) с явно афизиологичной точкой плавления +73 ºС. Первое из двух нарушений мы рассматриваем в свете патогенеза неалкогольной жировой болезни печени; второе - в формировании такого нарушения метаболизма ЖК и липидов, как образование ксантом. Напомним, что оливковое масло - это ω-6 С18:1 олеиновая МЖК: ω-9 С18:1 - специфичный субстрат действия инсулина только in vivo в животных клетках. В то же время филогенетически поздний инсулин не может превратить в олеиновую МЖК пул экзогенной пальмитиновой НЖК. Поступление ее in vivo происходит при реализации биологической функции трофологии, биологической реакции экзотрофии, которая в филогенезе на миллионы лет опережает действие инсулина. Регуляторными несогласованностями метаболизма в условиях относительного биологического совершенства in vivo можно считать то, что поздний в филогенезе инсулин инициирует превращение в ω-9 С18:1 олеиновую МЖК только эндогенной пальмитиновой НЖК, которая синтезирована в гепатоцитах in situ de novo из глюкозы, из экзогенных углеводов. Экзогенную же пальмитиновую НЖК, которая с ранних ступеней филогенеза поступает in vivo с пищей, инсулин в олеиновую МЖК не превращает. И чем выше содержание в пище пальмитиновой НЖК, тем более выражен потенциальный дефицит в клетках энергии по причине неоптимальных физико-химических, кинетических свойств субстрата [17]. Избыток в пище пальмитиновой НЖК является наиболее частой причиной того, что при длительной и неэффективной гиперинсулинемии, при функциональном истощении β-клеток, гибели их по типу апоптоза, формировании локальной биологической реакции воспаления функциональный синдром ИР превращается в обусловленный нарушениями структуры β-клеток сахарный диабет первого типа. Мы считаем необоснованным объединение функционального синдрома ИР и структурно обусловленного диабета второго типа. В отношении прогноза это разные афизиологичные процессы. Высокое содержание пальмитиновой НЖК, которая поступает с пищей, как и при формировании сахарного диабета первого и второго типов (структурное нарушение действия инсулина), формирует in vivo пальмитиновый вариант метаболизма ЖК. Основной ЖК, которую вынуждены окислять митохондрии, является пальмитиновая НЖК. В проведенных нами экспериментах в условиях in vitro в треххлористом углероде окисление озоном пальмитиновой НЖК происходит с константой скорости реакции на несколько порядков ниже, чем окисление ω-6 олеиновой МЖК [14]. Это дает нам основание полагать, что при высоком содержании в пище пальмитиновой НЖК, пальмитиновых ТГ в составе ЛПОНП и ЛПНП, при высоком ХС-ЛПНП, при реализации пальмитинового варианта метаболизма ЖК in vivo постоянно существует потенциальный дефицит энергии, недостаток АТФ. Диабет и синдром ИР - состояние постоянного недопроизводства АТФ, низкий уровень энергообеспечения in vivo, когда дефицит макроэргов возникает при активации даже физиологичных процессов. Оптимальным в прогностическом отношении in vivo является только олеиновый вариант метаболизма ЖК, когда митохондрии имеют возможность окислять в матриксе эндогенную ω-9 олеиновую МЖК, которую инсулин образует из глюкозы, из углеводов пищи [23]. Следовательно, условием физиологичного синтеза оптимальной in vivo для митохондрий ω-9 С18:1 олеиновой НЖК является достаточное содержание в пище углеводов при возможно сниженном уровне пальмитиновой НЖК. В этих условиях наработка митохондриями АТФ за единицу времени будет наибольшей. Основным субстратом синтеза ω-9 С18:1 олеиновой МЖК при действии инсулина являются экзогенные углеводы, которые должны преобладать в пище. При этом чем выше в пище содержание пальмитиновой НЖК, тем в большей мере формируется синдром ИР. С позиций филогенетической теории общей патологии лучшей пищей при сахарном диабете является та, которой миллионами лет питались животные, еще не синтезировавшие инсулин. Это животные пермского периода, которые уже жили на суше, но питались еще пищей из третьего мирового океана. При низкой температуре мирового океана (4-6 ºС) содержание тугоплавкой пальмитиновой НЖК в пище не могло быть выше 15 % всего количества ЖК [28], при доминировании in vivo олеинового варианта метаболизма ЖК. При современном питании (fast food) содержание пальмитиновой НЖК в пище превышает 40 %. In vivo доминирует пальмитиновый вариант метаболизма ЖК и постоянен потенциальный дефицит энергии, наработки АТФ. Оптимальное питание пациента с сахарным диабетом изложено еще на страницах Библии в форме диеты Святого Петра. Филогенетическое, функциональное различие висцеральных жировых клеток и подкожных адипоцитов Миллионы лет in vivo функционально сочетанно, филогенетически раздельно сосуществуют два пула жировых клеток: а) висцеральные жировые клетки (ВЖК) сальника и б) подкожные адипоциты [9]. Сформировались они на далеко отстоящих друг от друга ступенях филогенеза; призваны они обеспечивать субстратами энергии клетки, которые реализуют разные биологические функции. Энтероциты и ВЖК (ранее это одно ПС клеток) призваны реализовать: а) биологическую функцию трофологии (питания), биологическую реакцию эндотрофии; б) обеспечить субстратами для наработки энергии все клетки, которые реализуют биологические функции и биологические реакции in vivo. Число ВЖК в сальнике ограничено; они могут стать гипертрофированными, но они не реализуют биологическую реакцию пролиферации. Будучи в филогенезе ранними, они на плазматической мембране не имеют рецепторов к инсулину; инсулин на метаболизм ВЖК регуляторного действия не оказывает. ВЖК как источник ЖК физиологично функционируют только вне приема пищи, в биологической реакции эндотрофии, обеспечивая стабильность содержания ЖК в биологической функции гомеостаза. Локальной патологией пула ВЖК является метаболический синдром, синдром переедания пищи, которая физиологична по всем параметрам, включая переедание и оливкового масла - олеиновой МЖК. Олеиновая МЖК всегда in vivo востребована, но депонировать ее, однако, негде. Патологией филогенетически ранних ВЖК является формирование эндоплазматического стресса, нарушение синтеза, «фолдинга» протеинов, формирование асептичной биологической реакции воспаления. Фактором, который противостоит афизиологичному накоплению ЖК в составе ВЖК, является синтезированный ими гуморальный медиатор лептин. Адипоциты - поздние в филогенезе, зависимые от инсулина клетки, которые сформировались при становлении биологической функции локомоции. Среди всех ЛП регуляторному действию инсулина подвержены поздние в филогенезе олеиновые и пальмитиновые апоВ-100 ЛПОНП. Гормон активирует образование в гепатоцитах, секрецию и поглощение пальмитиновых и олеиновых ЛПОНП только инсулинозависимыми клетками путем апоЕ/В-100-эндоцитоза. Число адипоцитов in vivo не ограничено; они в равной мере становятся гипертрофированными при избытке субстрата (ЖК в форме неполярных ТГ в составе ЛПОНП) и активно реализуют при индукции субстратом биологическую реакцию пролиферации. Инсулин блокирует активность гормонзависимой липазы и освобождение в межклеточную среду (плазму крови) НЖК+МЖК в форме полярных НЭЖК только в адипоцитах. Если количество субстратов при реализации биологической реакции экзотрофии (приеме пищи) не вмещается в ВЖК, запасание экзогенных ЖК происходит в адипоцитах. Основной патологией адипоцитов является ожирение. Причина - переедание даже физиологичной по всем параметрам пищи, тем более если пища афизиологична по составу ЖК, особенно при избытке пальмитиновой НЖК. Позднее формирование подкожных адипоцитов в филогенезе сопровождает более высокая частота мутаций; они экспрессируют наследственные формы ожирения. В стремлении уменьшить индукцию субстратом, понизить аппетит на уровне организма адипоциты секретируют гуморальный медиатор адипонектин; действует же он на уровне организма. Для активации поглощения клетками глюкозы из межклеточной среды в условиях постпрандиальной, алиментарной гипергликемии поздний в филогенезе инсулин: а) блокирует липолиз в инсулинозависимых адипоцитах, понижая в плазме крови содержание НЭЖК; б) активирует выставление клетками на мембрану дополнительное число ГЛЮТ4 и поглощение клетками глюкозы. Инсулин активирует поглощение клетками глюкозы главным образом для того, чтобы: а) превратить гидрофильную глюкозу в гидрофобную ω-9 олеиновую МЖК; б) депонировать ЖК в составе инсулинозависимых адипоцитов в форме олеиновых ТГ; в) использовать далее ЖК как субстрат для наработки клетками энергии в реализации биологической функции локомоции. В течение миллионов лет in vivo, пока не было секреции инсулина, клетки РСТ в ПС локально синтезировали инсулиноподобный фактор роста, который обладал некоторыми свойствами инсулина. Длительное повышение содержания ЖК в плазме крови в форме НЭЖК в ассоциации с липидпереносящим белком альбумином формирует биологическую реакцию «переедания на уровне клеток» - пассивное (вынужденное) накопление ТГ в цитоплазме клеток, которые для депонирования ЖК не предназначены. Так развивается пассивный, афизиологичный липоидоз; накопление ТГ происходит и в β-клетках поджелудочной железы. И если в клетках произошла этерификация ЖК с образованием пальмитиновых ТГ, они надолго остаются в цитоплазме в форме «липидных капель», а по сути - инородных тел. Длительное «пассивное переедание» клеток на уровне организма нарушает их специализированную функцию. Филогенетические, функциональные особенности жировых клеток Жировыми являются специализированные клетки РСТ, которые исполняют одновременно три филогенетически разные ранние биологические реакции: а) активированное поглощение ЖК в форме неполярных ТГ; б) длительное активное депонирование ТГ в форме липидов: малые «капли» → большие «капли» → малые функционально активные «капли» и в) освобождение ЖК в межклеточную среду в форме полярных НЭЖК. Все три реакции регулированы гуморальным путем на аутокринном, паракринном и уровне организма (лептин ВЖК и адипонектин адипоцитов). Длительное депонирование ТГ в жировых клетках осуществляет большое семейство специфичных белков перилипинов. Чем мельче капли липидов, тем выше функциональная активность ВЖК или адипоцитов. Если почти весь объем цитоплазмы занят одной каплей ТГ, такие клетки находятся в состоянии «эндоплазматического» стресса; погибают они обычно по типу запрограммированного физиологичного апоптоза. В регуляции жировыми клетками in situ трех биологических реакций задействовано столь большое количество синтезированных локальных гуморальных медиаторов, что дало авторам основание именовать жировые клетки эндокринными. Постоянно высокий уровень НЭЖК в плазме крови филогенетично, конкурентно блокирует поглощение клетками глюкозы. Это дало основание говорить о синдроме ИР и сахарном диабете как о патологии в первую очередь ЖК и только во вторую о патологии метаболизма глюкозы. ВЖК, не имея рецепторов к инсулину, на мембране содержат рецепторы к филогенетически раннему инсулиноподобному фактору роста. Однако функцией инсулина он в полной мере не обладает. Фактор не инициирует в клетках синтез из пальмитиновой НЖК ω-9 олеиновой МЖК, но активирует выставление на мембрану филогенетически ранних глюкозных транспортеров ГЛЮТ1-ГЛЮТ3 в реализации всех биологических функций, кроме биологической функции локомоции. Высокое содержание НЭЖК в межклеточной среде - основа синдрома ИР Пока есть возможность активированно поглощать из межклеточной среды НЭЖК, ни одна из клеток in vivo пассивно поглощать глюкозу не станет. Вместе с тем важно выяснить причину повышения содержания НЭЖК в плазме крови. В эксперименте и клинике результатом введения в вену НЭЖК + альбумин всегда является гипергликемия. В свою очередь, внутривенное введение глюкозы на содержание НЭЖК в межклеточной среде не влияет. Можно полагать, что цикл Рендла (чередование окисления в митохондриях ЖК и пирувата, которы
×

About the authors

V N Titov

Email: vn_titov@mail.ru

References

  1. Булатова И. А., Щекотов В. В., Щекотова А. П. Функциональное состояние эндотелия при гепатитах и циррозах печени. Lambert Academic Publishins GMbH Saarbrucke 2011; 118.
  2. Зоров Д. Б., Плотников Е. Ю., Силачев Д. Н., Зорова Л. Д., Певзнер И. Б., Зоров С. Д., Бабенко В. А., Янкаускас С. С., Попков В. А., Савина П. С. Микробиота и митобиота. Поставив знак равенства между митохондрией и бактерией. Биохимия 2014; 79 (10): 1252-1268.
  3. Постнов Ю. В., Орлов С. Н. Первичная гипертензия как патология клеточных мембран. М. Медицина 1987; 177.
  4. Титов В. Н. Биологические функции (экзотрофия, гомеостаз, эндоэкология), биологические реакции (экскреция, воспаление, трансцитоз) и патогенез артериальной гипертонии. М.-Тверь: Триада 2009; 440.
  5. Титов В. Н. Инверсия представлений о биологической роли системы ренин → ангиотензин II → альдостерон и функции артериального давления как регулятора метаболизма. Клиническая лабораторная диагностика 2015; 2: 4-13.
  6. Титов В. Н. Клиническая биохимия жирных кислот, липидов и липопротеинов. М.-Тверь: Триада 2008; 272.
  7. Титов В. Н. Липотоксичность избытка жирных кислот в клетках: эндоплазматический стресс, афизиологичный фолдинг протеинов, белки-шапероны, биологическая реакция воспаления и апоптоз. Кардиологический вестник 2014; 3: 96-104.
  8. Титов В. Н. Первичный и вторичный атеросклероз, атероматоз и атеротромбоз. М.-Тверь: Триада 2008; 344.
  9. Титов В. Н. Становление в филогенезе биологической функции питания. Функциональное различие висцеральных жировых клеток и подкожных адипоцитов. Вопросы питания 2015; 84 (1): 15-24.
  10. Титов В. Н. Филогенетическая теория общей патологии. Патогенез болезней цивилизации. Атеросклероз. М.: ИНФРА-М 2014; 335.
  11. Титов В. Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Сахарный диабет. М.: ИНФРА-М 2014; 222.
  12. Титов В. Н. Филогенетическая теория общей патологии. Патогенез метаболических пандемий. Артериальная гипертония. М.: ИНФРА-М 2014; 204.
  13. Титов В. Н., Востров И. А., Ширяева Ю. К., Кааба С. И. Становление в филогенезе липопротеинов низкой, очень низкой плотности и инсулина. Липотоксичность жирных кислот и липидов. Позиционные изомеры триглицеридов. Успехи современной биологии 2012; 132 (5): 506-526.
  14. Титов В. Н., Лисицын Д. М. Жирные кислоты. Физическая химия, биология и медицина. М.-Тверь: Триада 2006; 672.
  15. Титов В. Н., Ощепкова Е. В., Дмитриев В. А. С-реактивный белок, микроальбуминурия. Эндогенное воспаление и артериальная гипертония. М.: Изд-во РГГУ 2009; 376.
  16. Шноль С. Э. Физико-химические факторы биологической эволюции. М.: Наука 1979; 270.
  17. Botham K. M., Wheeler-Jones C. P. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog. Lipid. Res. 2013; 52 (4): 446-464.
  18. Crowley S. D., Coffman T. M. The inextricable role of the kidney in hypertension. J. Clin. Invest. 2014; 124 (6): 2341 - 2347.
  19. Dubland J. A., Francis G. A. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front. Cell. Dev. Biol. 2015; 3: 3-10.
  20. Erbel C., Wolf A., Lasitschka F., Linden F., Domschke G., Akhavanpoor M., Doesch A. O., Katus H. A., Gleissner C. A. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability. Int. J. Cardiol. 2015; 186: 219-225.
  21. Gremmels H., Bevers L. M., Fledderus J. O., Braam B., van Zonneveld A. J., Verhaar M. C., Joles J. A. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells. Eur. J. Pharmacol. 2015; 751: 67 - 72.
  22. Gupta-Malhotra M., Banker A., Shete S., Hashmi S. S., Tyson J. E., Barratt M. S., Hecht J. T., Milewicz D. M., Boerwinkle E. Essential hypertension vs. secondary hypertension among children. Am. J. Hypertens 2015; 28 (1): 73-80.
  23. Hoeks J., Schrauwen P. Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol. Metab. 2012; 23 (9): 444-450.
  24. Ilhan F., Kalkanli S.T. Atherosclerosis and the role of immune cells. World J. Clin. Cases 2015; 3 (4): 345 - 352.
  25. Johnson R. J., Lanaspa M. A., Gabriela Sánchez-Lozada L., Rodriguez-Iturbe B. The discovery of hypertension: evolving views on the role of the kidneys, and current hot topics. Am. J. Physiol. Renal. Physiol. 2015; 308 (3): F167-F178.
  26. Lowren F., Teoh H, Verma S. Obesity and atherosclerosis: mechanistic insights. Can. J. Cardiol. 2015; 31 (2): 177-183.
  27. Papackova Z., Palenickova E., Dankova H., Zdychova J., Skop V., Kazdova L., Cahova M. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutr. Metab. 2012; 9: 22-37.
  28. Riccioni G., Sblendorio V. Atherosclerosis: from biology to pharamacological treatment. J. Geriatric. Cardiol. 2012; 9: 305-317.
  29. Schiffrin E. L. Immune mechanisms in hypertension and vascular injury. Кlin. Sci. 2014; 126 (4): 267-274.
  30. Szatryd C., Kimmel A. R. Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 2014; 96: 96-101.
  31. Tenenbaum A., Klempfner R., Fisman E. Z. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc. Diabetol. 2014; 13: 159-164.
  32. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Des. 2014; 20 (35): 5507-5509.

Copyright (c) 2015 Titov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies